当前位置: 首页>>代码示例>>Python>>正文


Python vgg16.decode_predictions方法代码示例

本文整理汇总了Python中keras.applications.vgg16.decode_predictions方法的典型用法代码示例。如果您正苦于以下问题:Python vgg16.decode_predictions方法的具体用法?Python vgg16.decode_predictions怎么用?Python vgg16.decode_predictions使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在keras.applications.vgg16的用法示例。


在下文中一共展示了vgg16.decode_predictions方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: predict

# 需要导入模块: from keras.applications import vgg16 [as 别名]
# 或者: from keras.applications.vgg16 import decode_predictions [as 别名]
def predict(image_path):
    # Load and resize the image using PIL.
    img = PIL.Image.open(image_path)
    img_resized = img.resize(input_shape, PIL.Image.LANCZOS)

    # Plot the image.
    plt.imshow(img_resized)
    plt.show()

    # Convert the PIL image to a numpy-array with the proper shape.
    img_array = np.expand_dims(np.array(img_resized), axis=0)

    # Use the VGG16 model to make a prediction.
    # This outputs an array with 1000 numbers corresponding to
    # the classes of the ImageNet-dataset.
    pred = pre_model.predict(img_array)
    
    # Decode the output of the VGG16 model.
    pred_decoded = decode_predictions(pred)[0]

    # Print the predictions.
    for code, name, score in pred_decoded:
        print("{0:>6.2%} : {1}".format(score, name)) 
开发者ID:devSessions,项目名称:crvi,代码行数:25,代码来源:finetune_vgg.py

示例2: predict_transferred

# 需要导入模块: from keras.applications import vgg16 [as 别名]
# 或者: from keras.applications.vgg16 import decode_predictions [as 别名]
def predict_transferred(model,image_path):
    # Load and resize the image using PIL.
    img = PIL.Image.open(image_path)
    img_resized = img.resize(input_shape, PIL.Image.LANCZOS)

    # Plot the image.
    plt.imshow(img_resized)
    plt.show()

    # Convert the PIL image to a numpy-array with the proper shape.
    img_array = np.expand_dims(np.array(img_resized), axis=0)

    # Use the VGG16 model to make a prediction.
    # This outputs an array with 1000 numbers corresponding to
    # the classes of the ImageNet-dataset.
    pred = model.predict(img_array)
    #cls_pred = np.argmax(pred,axis=1)
    print("Rs.10: {0}, Rs.20: {1}".format(pred[0][0]*100, pred[0][1]*100))
    
    # Decode the output of the VGG16 model.
    #pred_decoded = decode_predictions(pred)[0]

    # Print the predictions.
    #for code, name, score in pred_decoded:
        #print("{0:>6.2%} : {1}".format(score, name)) 
开发者ID:devSessions,项目名称:crvi,代码行数:27,代码来源:finetune_vgg.py

示例3: decode_label

# 需要导入模块: from keras.applications import vgg16 [as 别名]
# 或者: from keras.applications.vgg16 import decode_predictions [as 别名]
def decode_label(pred):
    return decode_predictions(pred)[0][0][1] 
开发者ID:peikexin9,项目名称:deepxplore,代码行数:4,代码来源:utils.py

示例4: process_pic

# 需要导入模块: from keras.applications import vgg16 [as 别名]
# 或者: from keras.applications.vgg16 import decode_predictions [as 别名]
def process_pic(img_path, model='', predict=True):
    img_path = img_path
    img = image.load_img(img_path, target_size=(224, 224))
    x = image.img_to_array(img)
    # 下面两步不是很理解
    x = np.expand_dims(x, axis=0)
    x = preprocess_input(x)
    
    if predict:  # predict pic's class
        last_layer_features = model.predict(x)  # 1000 last_layer_features
        # print('Predicted:', decode_predictions(last_layer_features, top=3)[0])
        return decode_predictions(last_layer_features, top=3)[0]
    else:  # return 4096 last_layer_features
        last_layer_features = model.predict(x)
        return last_layer_features 
开发者ID:OnlyBelter,项目名称:machine-learning-note,代码行数:17,代码来源:get_img_features_VGG16.py


注:本文中的keras.applications.vgg16.decode_predictions方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。