当前位置: 首页>>代码示例>>Python>>正文


Python resnet50.ResNet50方法代码示例

本文整理汇总了Python中keras.applications.resnet50.ResNet50方法的典型用法代码示例。如果您正苦于以下问题:Python resnet50.ResNet50方法的具体用法?Python resnet50.ResNet50怎么用?Python resnet50.ResNet50使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在keras.applications.resnet50的用法示例。


在下文中一共展示了resnet50.ResNet50方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: resnet_pseudo

# 需要导入模块: from keras.applications import resnet50 [as 别名]
# 或者: from keras.applications.resnet50 import ResNet50 [as 别名]
def resnet_pseudo(self,dim=224,freeze_layers=10,full_freeze='N'):
		model = ResNet50(weights='imagenet',include_top=False)
		x = model.output
		x = GlobalAveragePooling2D()(x)
		x = Dense(512, activation='relu')(x)
		x = Dropout(0.5)(x)
		x = Dense(512, activation='relu')(x)
		x = Dropout(0.5)(x)
		out = Dense(5,activation='softmax')(x)
		model_final = Model(input = model.input,outputs=out)
		if full_freeze != 'N':
			for layer in model.layers[0:freeze_layers]:
				layer.trainable = False
		return model_final

	# VGG16 Model for transfer Learning 
开发者ID:PacktPublishing,项目名称:Intelligent-Projects-Using-Python,代码行数:18,代码来源:TransferLearning.py

示例2: _imagenet_preprocess_input

# 需要导入模块: from keras.applications import resnet50 [as 别名]
# 或者: from keras.applications.resnet50 import ResNet50 [as 别名]
def _imagenet_preprocess_input(x, input_shape):
    """
    For ResNet50, VGG models. For InceptionV3 and Xception it's okay to use the
    keras version (e.g. InceptionV3.preprocess_input) as the code path they hit
    works okay with tf.Tensor inputs. The following was translated to tf ops from
    https://github.com/fchollet/keras/blob/fb4a0849cf4dc2965af86510f02ec46abab1a6a4/keras/applications/imagenet_utils.py#L52
    It's a possibility to change the implementation in keras to look like the
    following and modified to work with BGR images (standard in Spark), but not doing it for now.
    """
    # assuming 'BGR'
    # Zero-center by mean pixel
    mean = np.ones(input_shape + (3,), dtype=np.float32)
    mean[..., 0] = 103.939
    mean[..., 1] = 116.779
    mean[..., 2] = 123.68
    return x - mean 
开发者ID:databricks,项目名称:spark-deep-learning,代码行数:18,代码来源:keras_applications.py

示例3: main

# 需要导入模块: from keras.applications import resnet50 [as 别名]
# 或者: from keras.applications.resnet50 import ResNet50 [as 别名]
def main(self):
        self.logger.info('Will load keras model')
        model = ResNet50(weights='imagenet')
        self.logger.info('Keras model loaded')
        feature_list = []
        img_path_list = []
        for raw_file in self.inp.raw_files:
            media_path = raw_file.path
            file_list = os.listdir(media_path)
            total = float(len(file_list))
            for index, img_file in enumerate(file_list):
                img_path = os.path.join(media_path, img_file)
                img_path_list.append(img_path)
                img = image.load_img(img_path, target_size=(224, 224))
                x = keras_image.img_to_array(img)
                x = np.expand_dims(x, axis=0)
                x = preprocess_input(x)
                # extract features
                scores = model.predict(x)
                sim_class = np.argmax(scores)
                print('Scores {}\nSimClass: {}'.format(scores, sim_class))
                self.outp.request_annos(img_path, img_sim_class=sim_class)
                self.logger.info('Requested annotation for: {} (cluster: {})'.format(img_path, sim_class))
                self.update_progress(index*100/total) 
开发者ID:l3p-cv,项目名称:lost,代码行数:26,代码来源:cluster_resnet.py

示例4: inception_pseudo

# 需要导入模块: from keras.applications import resnet50 [as 别名]
# 或者: from keras.applications.resnet50 import ResNet50 [as 别名]
def inception_pseudo(self,dim=224,freeze_layers=30,full_freeze='N'):
		model = InceptionV3(weights='imagenet',include_top=False)
		x = model.output
		x = GlobalAveragePooling2D()(x)
		x = Dense(512, activation='relu')(x)
		x = Dropout(0.5)(x)
		x = Dense(512, activation='relu')(x)
		x = Dropout(0.5)(x)
		out = Dense(5,activation='softmax')(x)
		model_final = Model(input = model.input,outputs=out)
		if full_freeze != 'N':
			for layer in model.layers[0:freeze_layers]:
				layer.trainable = False
		return model_final

	# ResNet50 Model for transfer Learning 
开发者ID:PacktPublishing,项目名称:Intelligent-Projects-Using-Python,代码行数:18,代码来源:TransferLearning.py

示例5: inception_pseudo

# 需要导入模块: from keras.applications import resnet50 [as 别名]
# 或者: from keras.applications.resnet50 import ResNet50 [as 别名]
def inception_pseudo(self,dim=224,freeze_layers=30,full_freeze='N'):
		model = InceptionV3(weights='imagenet',include_top=False)
		x = model.output
		x = GlobalAveragePooling2D()(x)
		x = Dense(512, activation='relu')(x)
		x = Dropout(0.5)(x)
		x = Dense(512, activation='relu')(x)
		x = Dropout(0.5)(x)
		out = Dense(1)(x)
		model_final = Model(input = model.input,outputs=out)
		if full_freeze != 'N':
			for layer in model.layers[0:freeze_layers]:
				layer.trainable = False
		return model_final

	# ResNet50 Model for transfer Learning 
开发者ID:PacktPublishing,项目名称:Intelligent-Projects-Using-Python,代码行数:18,代码来源:TransferLearning_reg.py

示例6: resnet_pseudo

# 需要导入模块: from keras.applications import resnet50 [as 别名]
# 或者: from keras.applications.resnet50 import ResNet50 [as 别名]
def resnet_pseudo(self,dim=224,freeze_layers=10,full_freeze='N'):
		model = ResNet50(weights='imagenet',include_top=False)
		x = model.output
		x = GlobalAveragePooling2D()(x)
		x = Dense(512, activation='relu')(x)
		x = Dropout(0.5)(x)
		x = Dense(512, activation='relu')(x)
		x = Dropout(0.5)(x)
		out = Dense(1)(x)
		model_final = Model(input = model.input,outputs=out)
		if full_freeze != 'N':
			for layer in model.layers[0:freeze_layers]:
				layer.trainable = False
		return model_final

	# VGG16 Model for transfer Learning 
开发者ID:PacktPublishing,项目名称:Intelligent-Projects-Using-Python,代码行数:18,代码来源:TransferLearning_reg.py

示例7: resnet_pseudo

# 需要导入模块: from keras.applications import resnet50 [as 别名]
# 或者: from keras.applications.resnet50 import ResNet50 [as 别名]
def resnet_pseudo(self,dim=224,freeze_layers=10,full_freeze='N'):
        model = ResNet50(weights='imagenet',include_top=False)
        x = model.output
        x = GlobalAveragePooling2D()(x)
        x = Dense(512, activation='relu')(x)
        x = Dropout(0.5)(x)
        x = Dense(512, activation='relu')(x)
        x = Dropout(0.5)(x)
        out = Dense(5,activation='softmax')(x)
        model_final = Model(input = model.input,outputs=out)
        if full_freeze != 'N':
            for layer in model.layers[0:freeze_layers]:
                layer.trainable = False
        return model_final

# VGG16 Model for transfer Learning 
开发者ID:PacktPublishing,项目名称:Intelligent-Projects-Using-Python,代码行数:18,代码来源:TransferLearning_ffd.py

示例8: _model_backbone_headless

# 需要导入模块: from keras.applications import resnet50 [as 别名]
# 或者: from keras.applications.resnet50 import ResNet50 [as 别名]
def _model_backbone_headless(self):
        if self.config.backbone_nn_type == 'vgg':
            model = VGG16(weights='imagenet', include_top=False)
            # 畳み込み層の後のプーリング層を除く
            # https://github.com/keras-team/keras/issues/2371
            # https://github.com/keras-team/keras/issues/6229
            # http://forums.fast.ai/t/how-to-finetune-with-new-keras-api/2328/9
            model.layers.pop()
        else:
            model = ResNet50(weights='imagenet', include_top=False)
        # VGGの重みは学習対象外
        for layer in model.layers:
            layer.trainable = False
        output = model.layers[-1].output
        _input = model.input
        return _input, output 
开发者ID:shtamura,项目名称:maskrcnn,代码行数:18,代码来源:frcnn.py

示例9: resnet

# 需要导入模块: from keras.applications import resnet50 [as 别名]
# 或者: from keras.applications.resnet50 import ResNet50 [as 别名]
def resnet(self):
        """Build the structure of a convolutional neural network from input
        image data to the last hidden layer on a similar manner than ResNet

        See: He, Zhang, Ren, Sun. Deep Residual Learning for Image
        Recognition. ArXiv technical report, 2015.

        Returns
        -------
        tensor
            (batch_size, nb_labels)-shaped output predictions, that have to be
        compared with ground-truth values
        """
        resnet_model = resnet50.ResNet50(
            include_top=False, input_tensor=self.X
        )
        y = self.flatten(resnet_model.output)
        return self.output_layer(y, depth=self.nb_labels) 
开发者ID:Oslandia,项目名称:deeposlandia,代码行数:20,代码来源:feature_detection.py

示例10: get_model

# 需要导入模块: from keras.applications import resnet50 [as 别名]
# 或者: from keras.applications.resnet50 import ResNet50 [as 别名]
def get_model(n_classes=1):

    base_model = ResNet50(weights='imagenet', include_top=False)

    #for layer in base_model.layers:
    #    layer.trainable = False

    x = base_model.output
    x = GlobalMaxPooling2D()(x)
    x = Dropout(0.5)(x)
    x = Dense(100, activation="relu")(x)
    x = Dropout(0.5)(x)
    if n_classes == 1:
        x = Dense(n_classes, activation="sigmoid")(x)
    else:
        x = Dense(n_classes, activation="softmax")(x)

    base_model = Model(base_model.input, x, name="base_model")
    if n_classes == 1:
        base_model.compile(loss="binary_crossentropy", metrics=['acc'], optimizer="adam")
    else:
        base_model.compile(loss="sparse_categorical_crossentropy", metrics=['acc'], optimizer="adam")

    return base_model 
开发者ID:CVxTz,项目名称:face_age_gender,代码行数:26,代码来源:baseline_age.py

示例11: ResNet50

# 需要导入模块: from keras.applications import resnet50 [as 别名]
# 或者: from keras.applications.resnet50 import ResNet50 [as 别名]
def ResNet50(input_shape, num_classes):
    # wrap ResNet50 from keras, because ResNet50 is so deep.
    from keras.applications.resnet50 import ResNet50
    input_tensor = Input(shape=input_shape, name="input")
    x = ResNet50(include_top=False,
                 weights=None,
                 input_tensor=input_tensor,
                 input_shape=None,
                 pooling="avg",
                 classes=num_classes)
    x = Dense(units=2048, name="feature")(x.output)
    return Model(inputs=input_tensor, outputs=x)


# implement ResNet's block.
# I implement two classes block:
# one is basic block, the other is bottleneck block. 
开发者ID:wotchin,项目名称:SmooFaceEngine,代码行数:19,代码来源:cnn_models.py

示例12: _get_base_model

# 需要导入模块: from keras.applications import resnet50 [as 别名]
# 或者: from keras.applications.resnet50 import ResNet50 [as 别名]
def _get_base_model(self):
        """
        :return: base model from Keras based on user-supplied model name
        """
        if self.model_name == 'inception_v3':
            return InceptionV3(weights='imagenet', include_top=False)
        elif self.model_name == 'xception':
            return Xception(weights='imagenet', include_top=False)
        elif self.model_name == 'vgg16':
            return VGG16(weights='imagenet', include_top=False)
        elif self.model_name == 'vgg19':
            return VGG19(weights='imagenet', include_top=False)
        elif self.model_name == 'resnet50':
            return ResNet50(weights='imagenet', include_top=False)
        else:
            raise ValueError('Cannot find base model %s' % self.model_name) 
开发者ID:thoughtworksarts,项目名称:EmoPy,代码行数:18,代码来源:neuralnets.py

示例13: createResNetModel

# 需要导入模块: from keras.applications import resnet50 [as 别名]
# 或者: from keras.applications.resnet50 import ResNet50 [as 别名]
def createResNetModel():
    
    input_shape = (config.img_height, config.img_width, 3)

    input_img = Input(shape=input_shape, name='input_1')

    model = ResNet50(include_top=False, input_tensor=input_img)
    x = model.layers[-2].output

    # FC layer
    x = Cropping2D(cropping=((0, 1), (0, 1)), name='cropping2d_2')(x)
    h_grid = int(round(config.img_height / 100))
    w_grid = int(round(config.img_width / 100))
    x = Conv2DTranspose(config.classes, (64, 64),
        #output_shape=(None, h_grid * 102, w_grid * 102, config.classes),
        strides=(34, 34),
        padding='same',
        name='deconvolution2d_1')(x)
    x = Cropping2D(cropping=((h_grid, h_grid), (w_grid, w_grid)), name='cropping2d_1')(x)

    x = Reshape((config.img_width * config.img_height, config.classes), name='reshape_1')(x)
    out = Activation("softmax", name='activation_fc')(x)
    model = Model(model.layers[0].input, out)

    return model 
开发者ID:mrm-xiefan,项目名称:lunania-ai,代码行数:27,代码来源:fcn.py

示例14: model_3

# 需要导入模块: from keras.applications import resnet50 [as 别名]
# 或者: from keras.applications.resnet50 import ResNet50 [as 别名]
def model_3():

    input_layer = Input(shape=(224,224,3))
    from keras.layers import Conv2DTranspose as DeConv
    resnet = ResNet50(include_top=False, weights="imagenet")
    resnet.trainable = False

    res_features = resnet(input_layer)

    conv = DeConv(1024, padding="valid", activation="relu", kernel_size=3)(res_features)
    conv = UpSampling2D((2,2))(conv)
    conv = DeConv(512, padding="valid", activation="relu", kernel_size=5)(conv)
    conv = UpSampling2D((2,2))(conv)
    conv = DeConv(128, padding="valid", activation="relu", kernel_size=5)(conv)
    conv = UpSampling2D((2,2))(conv)
    conv = DeConv(32, padding="valid", activation="relu", kernel_size=5)(conv)
    conv = UpSampling2D((2,2))(conv)
    conv = DeConv(8, padding="valid", activation="relu", kernel_size=5)(conv)
    conv = UpSampling2D((2,2))(conv)
    conv = DeConv(4, padding="valid", activation="relu", kernel_size=5)(conv)
    conv = DeConv(1, padding="valid", activation="sigmoid", kernel_size=5)(conv)

    model = Model(inputs=input_layer, outputs=conv)
    return model 
开发者ID:gautam678,项目名称:Pix2Depth,代码行数:26,代码来源:cnn_architecture.py

示例15: PSPNet

# 需要导入模块: from keras.applications import resnet50 [as 别名]
# 或者: from keras.applications.resnet50 import ResNet50 [as 别名]
def PSPNet(n_classes = 3, input_shape = (128, 128, 4)):
    
    # Input to the model
    inputs = Input(input_shape)
    
    '''in_shape = inputs.shape
    out_shape = (in_shape[1], in_shape[2], 3)'''
    
    # Converting 4 channel input to a 3 channel map using Encoder-Decoder network 
    # to give it as a input to ResNet50 with pretrained weights
    res_input = encoder_decoder(inputs)            
    
    res_input_shape = K.int_shape(res_input)
    res_input_shape = (res_input_shape[1],res_input_shape[2],res_input_shape[3])
    
    # Passing the 3 channel map into ResNet50 followed by 2 upsampling layers 
    # to get a output of shape exactly 1/8th of the input map shape
    res = resnet(res_input, input_shape = res_input_shape)                        
    
    # Pyramid Pooling Module
    ppmodule_out = pyramid_pooling_module(res)                
    
    # Final Conv layers and output
    x = Conv2D(512, 3, activation = 'relu', padding='same')(ppmodule_out)
    x = BatchNormalization()(x)
    x = Dropout(0.5)(x)
    
    x = Conv2D(n_classes, 1)(x)
    #x = interpolation(x, shape = (input_shape[0], input_shape[1]))
    x = Lambda(interpolation, arguments={'shape': (input_shape[0], input_shape[1])})(x)
    out = Activation('softmax')(x)
    
    model = Model(inputs = inputs, outputs = out)
    
    adam = Adam(lr = 0.00001)
    
    model.compile(optimizer = adam, loss = 'categorical_crossentropy', metrics = ['accuracy'])
    
    model.summary()
    return model 
开发者ID:manideep2510,项目名称:eye-in-the-sky,代码行数:42,代码来源:pspnet.py


注:本文中的keras.applications.resnet50.ResNet50方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。