本文整理汇总了Python中keras.applications.mobilenet.MobileNet方法的典型用法代码示例。如果您正苦于以下问题:Python mobilenet.MobileNet方法的具体用法?Python mobilenet.MobileNet怎么用?Python mobilenet.MobileNet使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类keras.applications.mobilenet
的用法示例。
在下文中一共展示了mobilenet.MobileNet方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: mobilenet_retinanet
# 需要导入模块: from keras.applications import mobilenet [as 别名]
# 或者: from keras.applications.mobilenet import MobileNet [as 别名]
def mobilenet_retinanet(num_classes, backbone='mobilenet224_1.0', inputs=None, modifier=None, **kwargs):
alpha = float(backbone.split('_')[1])
# choose default input
if inputs is None:
inputs = keras.layers.Input((None, None, 3))
mobilenet = MobileNet(input_tensor=inputs, alpha=alpha, include_top=False, pooling=None, weights=None)
# get last layer from each depthwise convolution blocks 3, 5, 11 and 13
outputs = [mobilenet.get_layer(name='conv_pw_{}_relu'.format(i)).output for i in [3, 5, 11, 13]]
# create the mobilenet backbone
mobilenet = keras.models.Model(inputs=inputs, outputs=outputs, name=mobilenet.name)
# invoke modifier if given
if modifier:
mobilenet = modifier(mobilenet)
# create the full model
model = retinanet.retinanet_bbox(inputs=inputs, num_classes=num_classes, backbone=mobilenet, **kwargs)
return model
示例2: __call__
# 需要导入模块: from keras.applications import mobilenet [as 别名]
# 或者: from keras.applications.mobilenet import MobileNet [as 别名]
def __call__(self):
logging.debug("Creating model...")
inputs = Input(shape=self._input_shape)
model_mobilenet = MobileNet(input_shape=self._input_shape, alpha=self.alpha, depth_multiplier=1, dropout=1e-3, include_top=False, weights=None, input_tensor=None, pooling=None)
x = model_mobilenet(inputs)
#flatten = Flatten()(x)
feat_a = Conv2D(20,(1,1),activation='relu')(x)
feat_a = Flatten()(feat_a)
feat_a = Dropout(0.2)(feat_a)
feat_a = Dense(32,activation='relu',name='feat_a')(feat_a)
pred_a = Dense(1,name='pred_a')(feat_a)
model = Model(inputs=inputs, outputs=[pred_a])
return model
示例3: mobilenet_retinanet
# 需要导入模块: from keras.applications import mobilenet [as 别名]
# 或者: from keras.applications.mobilenet import MobileNet [as 别名]
def mobilenet_retinanet(num_classes, backbone='mobilenet224_1.0', inputs=None, modifier=None, cfg=None, **kwargs):
""" Constructs a retinanet model using a mobilenet backbone.
Args
num_classes: Number of classes to predict.
backbone: Which backbone to use (one of ('mobilenet128', 'mobilenet160', 'mobilenet192', 'mobilenet224')).
inputs: The inputs to the network (defaults to a Tensor of shape (None, None, 3)).
modifier: A function handler which can modify the backbone before using it in retinanet (this can be used to freeze backbone layers for example).
Returns
RetinaNet model with a MobileNet backbone.
"""
alpha = float(backbone.split('_')[1])
# choose default input
if inputs is None:
inputs = keras.layers.Input((None, None, 3))
elif isinstance(inputs, tuple):
inputs = keras.layers.Input(inputs)
backbone = mobilenet.MobileNet(input_tensor=inputs, alpha=alpha, include_top=False, pooling=None, weights=None)
# create the full model
layer_names = ['conv_pw_5_relu', 'conv_pw_11_relu', 'conv_pw_13_relu']
layer_outputs = [backbone.get_layer(name).output for name in layer_names]
backbone = keras.models.Model(inputs=inputs, outputs=layer_outputs, name=backbone.name)
# invoke modifier if given
if modifier:
backbone = modifier(backbone)
return retinanet.retinanet(inputs=inputs, num_classes=num_classes, backbone_layers=backbone.outputs, **kwargs)
示例4: __init__
# 需要导入模块: from keras.applications import mobilenet [as 别名]
# 或者: from keras.applications.mobilenet import MobileNet [as 别名]
def __init__(self, input_size):
input_image = Input(shape=(input_size, input_size, 3))
mobilenet = MobileNet(input_shape=(224,224,3), include_top=False)
mobilenet.load_weights(MOBILENET_BACKEND_PATH)
x = mobilenet(input_image)
self.feature_extractor = Model(input_image, x)
示例5: __init__
# 需要导入模块: from keras.applications import mobilenet [as 别名]
# 或者: from keras.applications.mobilenet import MobileNet [as 别名]
def __init__(self, input_size):
input_image = Input(shape=(input_size, input_size, 3))
mobilenet = MobileNet(input_shape=(224,224,3), include_top=False)
mobilenet.load_weights("data/mobilenet_backend.h5")
x = mobilenet(input_image)
self.feature_extractor = Model(input_image, x)
示例6: mobilenet_retinanet
# 需要导入模块: from keras.applications import mobilenet [as 别名]
# 或者: from keras.applications.mobilenet import MobileNet [as 别名]
def mobilenet_retinanet(num_classes, backbone='mobilenet224_1.0', inputs=None, modifier=None, **kwargs):
""" Constructs a retinanet model using a mobilenet backbone.
Args
num_classes: Number of classes to predict.
backbone: Which backbone to use (one of ('mobilenet128', 'mobilenet160', 'mobilenet192', 'mobilenet224')).
inputs: The inputs to the network (defaults to a Tensor of shape (None, None, 3)).
modifier: A function handler which can modify the backbone before using it in retinanet (this can be used to freeze backbone layers for example).
Returns
RetinaNet model with a MobileNet backbone.
"""
alpha = float(backbone.split('_')[1])
# choose default input
if inputs is None:
inputs = keras.layers.Input((None, None, 3))
backbone = mobilenet.MobileNet(input_tensor=inputs, alpha=alpha, include_top=False, pooling=None, weights=None)
# create the full model
layer_names = ['conv_pw_5_relu', 'conv_pw_11_relu', 'conv_pw_13_relu']
layer_outputs = [backbone.get_layer(name).output for name in layer_names]
backbone = keras.models.Model(inputs=inputs, outputs=layer_outputs, name=backbone.name)
# invoke modifier if given
if modifier:
backbone = modifier(backbone)
return retinanet.retinanet(inputs=inputs, num_classes=num_classes, backbone_layers=backbone.outputs, **kwargs)
示例7: get_model_pretrain
# 需要导入模块: from keras.applications import mobilenet [as 别名]
# 或者: from keras.applications.mobilenet import MobileNet [as 别名]
def get_model_pretrain(arch):
modlrate = 1
if "VGG16" in arch: base_model = vgg16.VGG16
elif "VGG19" in arch: base_model = vgg19.VGG19
elif "RESNET50" in arch: base_model = resnet50.ResNet50
elif "DENSENET121" in arch: base_model = densenet.DenseNet121
elif "MOBILENET" in arch:
base_model = mobilenet.MobileNet
modlrate = 10
else: print("model not avaiable"); exit()
base_model = base_model(weights='imagenet', include_top=False)
return base_model, modlrate
示例8: mobilenet_retinanet
# 需要导入模块: from keras.applications import mobilenet [as 别名]
# 或者: from keras.applications.mobilenet import MobileNet [as 别名]
def mobilenet_retinanet(num_classes, backbone='mobilenet224_1.0', inputs=None, modifier=None, **kwargs):
""" Constructs a retinanet model using a mobilenet backbone.
Args
num_classes: Number of classes to predict.
backbone: Which backbone to use (one of ('mobilenet128', 'mobilenet160', 'mobilenet192', 'mobilenet224')).
inputs: The inputs to the network (defaults to a Tensor of shape (None, None, 3)).
modifier: A function handler which can modify the backbone before using it in retinanet (this can be used to freeze backbone layers for example).
Returns
RetinaNet model with a MobileNet backbone.
"""
alpha = float(backbone.split('_')[1])
# choose default input
if inputs is None:
inputs = keras.layers.Input((None, None, 3))
backbone = mobilenet.MobileNet(input_tensor=inputs, alpha=alpha, include_top=False, pooling=None, weights=None)
# create the full model
layer_names = ['conv_pw_5_relu', 'conv_pw_11_relu', 'conv_pw_13_relu']
layer_outputs = [backbone.get_layer(name).output for name in layer_names]
backbone = keras.models.Model(inputs=inputs, outputs=layer_outputs, name=backbone.name)
# invoke modifier if given
if modifier:
backbone = modifier(backbone)
# C2 not provided
backbone_layers = {
'C3': backbone.outputs[0],
'C4': backbone.outputs[1],
'C5': backbone.outputs[2]
}
return retinanet.retinanet(inputs=inputs, num_classes=num_classes, backbone_layers=backbone_layers, **kwargs)
示例9: __init__
# 需要导入模块: from keras.applications import mobilenet [as 别名]
# 或者: from keras.applications.mobilenet import MobileNet [as 别名]
def __init__(self):
logger.info('Loading MobileNet')
self.model = MobileNet(weights='imagenet')
示例10: get_small_model_with_other_model_as_layer
# 需要导入模块: from keras.applications import mobilenet [as 别名]
# 或者: from keras.applications.mobilenet import MobileNet [as 别名]
def get_small_model_with_other_model_as_layer():
from keras.layers import Input, Dense
from keras.models import Model
from keras.applications.mobilenet import MobileNet
inp_mask = Input(shape=(128, 128, 3))
pretrain_model_mask = MobileNet(input_shape=(128, 128, 3), include_top=False, weights='imagenet', pooling='avg')
pretrain_model_mask.name = 'mobilenet'
x = pretrain_model_mask(inp_mask)
out = Dense(2, activation='sigmoid')(x)
model = Model(inputs=inp_mask, outputs=[out])
return model
示例11: mobilenet_m2det
# 需要导入模块: from keras.applications import mobilenet [as 别名]
# 或者: from keras.applications.mobilenet import MobileNet [as 别名]
def mobilenet_m2det(num_classes, backbone='mobilenet224_1.0', inputs=None, modifier=None, **kwargs):
""" Constructs a m2det model using a mobilenet backbone.
Args
num_classes: Number of classes to predict.
backbone: Which backbone to use (one of ('mobilenet128', 'mobilenet160', 'mobilenet192', 'mobilenet224')).
inputs: The inputs to the network (defaults to a Tensor of shape (None, None, 3)).
modifier: A function handler which can modify the backbone before using it in m2det (this can be used to freeze backbone layers for example).
Returns
RetinaNet model with a MobileNet backbone.
"""
alpha = float(backbone.split('_')[1])
# choose default input
if inputs is None:
inputs = keras.layers.Input((640, 640, 3))
backbone = mobilenet.MobileNet(input_tensor=inputs, alpha=alpha, include_top=False, pooling=None, weights=None)
# create the full model
layer_names = ['conv_pw_5_relu', 'conv_pw_11_relu', 'conv_pw_13_relu']
layer_outputs = [backbone.get_layer(name).output for name in layer_names]
backbone = keras.models.Model(inputs=inputs, outputs=layer_outputs, name=backbone.name)
# invoke modifier if given
if modifier:
backbone = modifier(backbone)
print(backbone.summary())
return m2det.m2det(inputs=inputs, num_classes=num_classes, backbone_layers=backbone.outputs, **kwargs)
示例12: mobilenet_retinanet
# 需要导入模块: from keras.applications import mobilenet [as 别名]
# 或者: from keras.applications.mobilenet import MobileNet [as 别名]
def mobilenet_retinanet(num_classes, backbone='mobilenet224_1.0',
inputs=None, modifier=None, **kwargs):
""" Constructs a retinanet model using a mobilenet backbone.
Parameters
----------
num_classes: int
Number of classes to predict.
backbone : str
Which backbone to use (one of ('mobilenet128', 'mobilenet160',
'mobilenet192', 'mobilenet224')).
inputs : tensor
The inputs to the network (defaults to a Tensor of shape
(None, None, 3)).
modifier : function
A function handler which can modify the backbone before using
it in retinanet (this can be used to freeze backbone layers for
example).
Returns
RetinaNet model with a MobileNet backbone.
"""
alpha = float(backbone.split('_')[1])
# choose default input
if inputs is None:
inputs = keras.layers.Input((None, None, 3))
backbone = mobilenet.MobileNet(
input_tensor=inputs,
alpha=alpha,
include_top=False,
pooling=None,
weights=None)
# create the full model
layer_names = ['conv_pw_5_relu', 'conv_pw_11_relu', 'conv_pw_13_relu']
layer_outputs = [backbone.get_layer(name).output for name in layer_names]
backbone = keras.models.Model(
inputs=inputs,
outputs=layer_outputs,
name=backbone.name)
# invoke modifier if given
if modifier:
backbone = modifier(backbone)
return retinanet.retinanet(
inputs=inputs,
num_classes=num_classes,
backbone_layers=backbone.outputs, **kwargs)
示例13: get_tst_neural_net
# 需要导入模块: from keras.applications import mobilenet [as 别名]
# 或者: from keras.applications.mobilenet import MobileNet [as 别名]
def get_tst_neural_net(type):
model = None
custom_objects = dict()
if type == 'mobilenet_small':
from keras.applications.mobilenet import MobileNet
model = MobileNet((128, 128, 3), depth_multiplier=1, alpha=0.25, include_top=True, weights='imagenet')
elif type == 'mobilenet':
from keras.applications.mobilenet import MobileNet
model = MobileNet((224, 224, 3), depth_multiplier=1, alpha=1.0, include_top=True, weights='imagenet')
elif type == 'mobilenet_v2':
from keras.applications.mobilenetv2 import MobileNetV2
model = MobileNetV2((224, 224, 3), depth_multiplier=1, alpha=1.4, include_top=True, weights='imagenet')
elif type == 'resnet50':
from keras.applications.resnet50 import ResNet50
model = ResNet50(input_shape=(224, 224, 3), include_top=True, weights='imagenet')
elif type == 'inception_v3':
from keras.applications.inception_v3 import InceptionV3
model = InceptionV3(input_shape=(299, 299, 3), include_top=True, weights='imagenet')
elif type == 'inception_resnet_v2':
from keras.applications.inception_resnet_v2 import InceptionResNetV2
model = InceptionResNetV2(input_shape=(299, 299, 3), include_top=True, weights='imagenet')
elif type == 'xception':
from keras.applications.xception import Xception
model = Xception(input_shape=(299, 299, 3), include_top=True, weights='imagenet')
elif type == 'densenet121':
from keras.applications.densenet import DenseNet121
model = DenseNet121(input_shape=(224, 224, 3), include_top=True, weights='imagenet')
elif type == 'densenet169':
from keras.applications.densenet import DenseNet169
model = DenseNet169(input_shape=(224, 224, 3), include_top=True, weights='imagenet')
elif type == 'densenet201':
from keras.applications.densenet import DenseNet201
model = DenseNet201(input_shape=(224, 224, 3), include_top=True, weights='imagenet')
elif type == 'nasnetmobile':
from keras.applications.nasnet import NASNetMobile
model = NASNetMobile(input_shape=(224, 224, 3), include_top=True, weights='imagenet')
elif type == 'nasnetlarge':
from keras.applications.nasnet import NASNetLarge
model = NASNetLarge(input_shape=(331, 331, 3), include_top=True, weights='imagenet')
elif type == 'vgg16':
from keras.applications.vgg16 import VGG16
model = VGG16(input_shape=(224, 224, 3), include_top=False, pooling='avg', weights='imagenet')
elif type == 'vgg19':
from keras.applications.vgg19 import VGG19
model = VGG19(input_shape=(224, 224, 3), include_top=False, pooling='avg', weights='imagenet')
elif type == 'multi_io':
model = get_custom_multi_io_model()
elif type == 'multi_model_layer_1':
model = get_custom_model_with_other_model_as_layer()
elif type == 'multi_model_layer_2':
model = get_small_model_with_other_model_as_layer()
elif type == 'Conv2DTranspose':
model = get_Conv2DTranspose_model()
elif type == 'RetinaNet':
model, custom_objects = get_RetinaNet_model()
elif type == 'conv3d_model':
model = get_simple_3d_model()
return model, custom_objects