本文整理汇总了Python中keras.applications.mobilenet.DepthwiseConv2D方法的典型用法代码示例。如果您正苦于以下问题:Python mobilenet.DepthwiseConv2D方法的具体用法?Python mobilenet.DepthwiseConv2D怎么用?Python mobilenet.DepthwiseConv2D使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类keras.applications.mobilenet
的用法示例。
在下文中一共展示了mobilenet.DepthwiseConv2D方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_tiny_depthwise_conv_same_pad
# 需要导入模块: from keras.applications import mobilenet [as 别名]
# 或者: from keras.applications.mobilenet import DepthwiseConv2D [as 别名]
def test_tiny_depthwise_conv_same_pad(self):
np.random.seed(1988)
input_dim = 16
input_shape = (input_dim, input_dim, 3)
depth_multiplier = 1
kernel_height = 3
kernel_width = 3
# Define a model
model = Sequential()
model.add(
DepthwiseConv2D(
depth_multiplier=depth_multiplier,
kernel_size=(kernel_height, kernel_width),
input_shape=input_shape,
padding="same",
strides=(1, 1),
)
)
# Set some random weights
model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()])
# Test the keras model
self._test_model(model)
示例2: test_tiny_depthwise_conv_valid_pad
# 需要导入模块: from keras.applications import mobilenet [as 别名]
# 或者: from keras.applications.mobilenet import DepthwiseConv2D [as 别名]
def test_tiny_depthwise_conv_valid_pad(self):
np.random.seed(1988)
input_dim = 16
input_shape = (input_dim, input_dim, 3)
depth_multiplier = 1
kernel_height = 3
kernel_width = 3
# Define a model
model = Sequential()
model.add(
DepthwiseConv2D(
depth_multiplier=depth_multiplier,
kernel_size=(kernel_height, kernel_width),
input_shape=input_shape,
padding="valid",
strides=(1, 1),
)
)
# Set some random weights
model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()])
# Test the keras model
self._test_model(model)
示例3: test_tiny_depthwise_conv_same_pad_depth_multiplier
# 需要导入模块: from keras.applications import mobilenet [as 别名]
# 或者: from keras.applications.mobilenet import DepthwiseConv2D [as 别名]
def test_tiny_depthwise_conv_same_pad_depth_multiplier(self):
np.random.seed(1988)
input_dim = 16
input_shape = (input_dim, input_dim, 3)
depth_multiplier = 4
kernel_height = 3
kernel_width = 3
# Define a model
model = Sequential()
model.add(
DepthwiseConv2D(
depth_multiplier=depth_multiplier,
kernel_size=(kernel_height, kernel_width),
input_shape=input_shape,
padding="same",
strides=(1, 1),
)
)
# Set some random weights
model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()])
# Test the keras model
self._test_model(model)
示例4: test_tiny_depthwise_conv_valid_pad_depth_multiplier
# 需要导入模块: from keras.applications import mobilenet [as 别名]
# 或者: from keras.applications.mobilenet import DepthwiseConv2D [as 别名]
def test_tiny_depthwise_conv_valid_pad_depth_multiplier(self):
np.random.seed(1988)
input_dim = 16
input_shape = (input_dim, input_dim, 3)
depth_multiplier = 2
kernel_height = 3
kernel_width = 3
# Define a model
model = Sequential()
model.add(
DepthwiseConv2D(
depth_multiplier=depth_multiplier,
kernel_size=(kernel_height, kernel_width),
input_shape=input_shape,
padding="valid",
strides=(1, 1),
)
)
# Set some random weights
model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()])
# Test the keras model
self._test_model(model)
示例5: keras_to_coreml
# 需要导入模块: from keras.applications import mobilenet [as 别名]
# 或者: from keras.applications.mobilenet import DepthwiseConv2D [as 别名]
def keras_to_coreml():
with custom_object_scope({'smoothL1': smoothL1, 'relu6': relu6, 'DepthwiseConv2D': mobilenet.DepthwiseConv2D}):
ml_model = load_model(MODEL_PATH)
coreml_model = coremltools.converters.keras.convert(ml_model,
input_names='image', image_input_names='image',
is_bgr=False)
coreml_model.save(ML_MODEL_PATH)
示例6: __init__
# 需要导入模块: from keras.applications import mobilenet [as 别名]
# 或者: from keras.applications.mobilenet import DepthwiseConv2D [as 别名]
def __init__(self, model):
super(Keras2Parser, self).__init__()
# load model files into Keras graph
if isinstance(model, _string_types):
try:
# Keras 2.1.6
from keras.applications.mobilenet import relu6
from keras.applications.mobilenet import DepthwiseConv2D
model = _keras.models.load_model(
model,
custom_objects={
'relu6': _keras.applications.mobilenet.relu6,
'DepthwiseConv2D': _keras.applications.mobilenet.DepthwiseConv2D
}
)
except:
# Keras. 2.2.2
import keras.layers as layers
model = _keras.models.load_model(
model,
custom_objects={
'relu6': layers.ReLU(6, name='relu6'),
'DepthwiseConv2D': layers.DepthwiseConv2D
}
)
self.weight_loaded = True
elif isinstance(model, tuple):
model = self._load_model(model[0], model[1])
else:
assert False
# _keras.utils.plot_model(model, "model.png", show_shapes = True)
# Build network graph
self.data_format = _keras.backend.image_data_format()
self.keras_graph = Keras2Graph(model)
self.keras_graph.build()
self.lambda_layer_count = 0
示例7: _emit_convolution
# 需要导入模块: from keras.applications import mobilenet [as 别名]
# 或者: from keras.applications.mobilenet import DepthwiseConv2D [as 别名]
def _emit_convolution(self, IR_node, conv_type):
self.used_layers.add('Conv')
# assert IR_node.get_attr('group', 1) == 1
group = IR_node.get_attr("group", 1)
if conv_type.endswith('Transpose'):
filters = IR_node.get_attr('kernel_shape')[-2]
else:
filters = IR_node.get_attr('kernel_shape')[-1]
filters_str = 'filters={}'.format(filters) if not conv_type.endswith('DepthwiseConv2D') else 'depth_multiplier={}'.format(filters)
# change dw from filters to 1
input_node, padding = self._defuse_padding(IR_node)
dilations = IR_node.get_attr('dilations')
if not dilations or len(dilations) == 2:
# reset the default dilation
dilations = [1] * len(IR_node.get_attr('kernel_shape'))
code = "{:<15} = convolution(weights_dict, name='{}', input={}, group={}, conv_type='{}', {}, kernel_size={}, strides={}, dilation_rate={}, padding='{}', use_bias={})".format(
IR_node.variable_name,
IR_node.name,
input_node,
group,
conv_type,
filters_str,
tuple(IR_node.get_attr('kernel_shape')[:-2]),
tuple(IR_node.get_attr('strides')[1:-1]),
tuple(dilations[1:-1]),
padding,
IR_node.get_attr('use_bias'))
return code
示例8: emit_DepthwiseConv
# 需要导入模块: from keras.applications import mobilenet [as 别名]
# 或者: from keras.applications.mobilenet import DepthwiseConv2D [as 别名]
def emit_DepthwiseConv(self, IR_node, in_scope=False):
try:
from keras.applications.mobilenet import DepthwiseConv2D
return self._emit_convolution(IR_node, 'keras.applications.mobilenet.DepthwiseConv2D')
except:
return self._emit_convolution(IR_node, 'layers.DepthwiseConv2D')
示例9: _layer_Conv
# 需要导入模块: from keras.applications import mobilenet [as 别名]
# 或者: from keras.applications.mobilenet import DepthwiseConv2D [as 别名]
def _layer_Conv(self):
self.add_body(0, """
def convolution(weights_dict, name, input, group, conv_type, filters=None, **kwargs):
if not conv_type.startswith('layer'):
layer = keras.applications.mobilenet.DepthwiseConv2D(name=name, **kwargs)(input)
return layer
elif conv_type == 'layers.DepthwiseConv2D':
layer = layers.DepthwiseConv2D(name=name, **kwargs)(input)
return layer
inp_filters = K.int_shape(input)[-1]
inp_grouped_channels = int(inp_filters / group)
out_grouped_channels = int(filters / group)
group_list = []
if group == 1:
func = getattr(layers, conv_type.split('.')[-1])
layer = func(name = name, filters = filters, **kwargs)(input)
return layer
weight_groups = list()
if not weights_dict == None:
w = np.array(weights_dict[name]['weights'])
weight_groups = np.split(w, indices_or_sections=group, axis=-1)
for c in range(group):
x = layers.Lambda(lambda z: z[..., c * inp_grouped_channels:(c + 1) * inp_grouped_channels])(input)
x = layers.Conv2D(name=name + "_" + str(c), filters=out_grouped_channels, **kwargs)(x)
weights_dict[name + "_" + str(c)] = dict()
weights_dict[name + "_" + str(c)]['weights'] = weight_groups[c]
group_list.append(x)
layer = layers.concatenate(group_list, axis = -1)
if 'bias' in weights_dict[name]:
b = K.variable(weights_dict[name]['bias'], name = name + "_bias")
layer = layer + b
return layer""")
示例10: _bottleneck
# 需要导入模块: from keras.applications import mobilenet [as 别名]
# 或者: from keras.applications.mobilenet import DepthwiseConv2D [as 别名]
def _bottleneck(inputs, filters, kernel, t, s, r=False):
"""Bottleneck
This function defines a basic bottleneck structure.
# Arguments
inputs: Tensor, input tensor of conv layer.
filters: Integer, the dimensionality of the output space.
kernel: An integer or tuple/list of 2 integers, specifying the
width and height of the 2D convolution window.
t: Integer, expansion factor.
t is always applied to the input size.
s: An integer or tuple/list of 2 integers,specifying the strides
of the convolution along the width and height.Can be a single
integer to specify the same value for all spatial dimensions.
r: Boolean, Whether to use the residuals.
# Returns
Output tensor.
"""
channel_axis = 1 if K.image_data_format() == 'channels_first' else -1
tchannel = K.int_shape(inputs)[channel_axis] * t
x = _conv_block(inputs, tchannel, (1, 1), (1, 1))
x = DepthwiseConv2D(kernel, strides=(s, s),
depth_multiplier=1, padding='same')(x)
x = BatchNormalization(axis=channel_axis)(x)
x = Activation(relu6)(x)
x = Conv2D(filters, (1, 1), strides=(1, 1), padding='same')(x)
x = BatchNormalization(axis=channel_axis)(x)
if r:
x = add([x, inputs])
return x
示例11: _load_model
# 需要导入模块: from keras.applications import mobilenet [as 别名]
# 或者: from keras.applications.mobilenet import DepthwiseConv2D [as 别名]
def _load_model(self, model_network_path, model_weight_path):
"""Load a keras model from disk
Parameters
----------
model_network_path: str
Path where the model network path is (json file)
model_weight_path: str
Path where the model network weights are (hd5 file)
Returns
-------
model: A keras model
"""
from keras.models import model_from_json
# Load the model network
json_file = open(model_network_path, 'r')
loaded_model_json = json_file.read()
json_file.close()
# Load the model weights
try:
from keras.applications.mobilenet import relu6
from keras.applications.mobilenet import DepthwiseConv2D
loaded_model = model_from_json(loaded_model_json, custom_objects={
'relu6': _keras.applications.mobilenet.relu6,
'DepthwiseConv2D': _keras.applications.mobilenet.DepthwiseConv2D})
except:
import keras.layers as layers
loaded_model = model_from_json(loaded_model_json, custom_objects={
'relu6': layers.ReLU(6, name='relu6'),
'DepthwiseConv2D': layers.DepthwiseConv2D})
if model_weight_path:
if os.path.isfile(model_weight_path):
loaded_model.load_weights(model_weight_path)
self.weight_loaded = True
print("Network file [{}] and [{}] is loaded successfully.".format(model_network_path, model_weight_path))
else:
print("Warning: Weights File [%s] is not found." % (model_weight_path))
return loaded_model
示例12: test_tiny_mobilenet_arch
# 需要导入模块: from keras.applications import mobilenet [as 别名]
# 或者: from keras.applications.mobilenet import DepthwiseConv2D [as 别名]
def test_tiny_mobilenet_arch(self, model_precision=_MLMODEL_FULL_PRECISION):
def ReLU6(x, name):
if keras.__version__ >= _StrictVersion("2.2.1"):
return ReLU(6.0, name=name)(x)
else:
return Activation(relu6, name=name)(x)
img_input = Input(shape=(32, 32, 3))
x = Conv2D(
4, (3, 3), padding="same", use_bias=False, strides=(2, 2), name="conv1"
)(img_input)
x = BatchNormalization(axis=-1, name="conv1_bn")(x)
x = ReLU6(x, name="conv1_relu")
x = DepthwiseConv2D(
(3, 3),
padding="same",
depth_multiplier=1,
strides=(1, 1),
use_bias=False,
name="conv_dw_1",
)(x)
x = BatchNormalization(axis=-1, name="conv_dw_1_bn")(x)
x = ReLU6(x, name="conv_dw_1_relu")
x = Conv2D(
8, (1, 1), padding="same", use_bias=False, strides=(1, 1), name="conv_pw_1"
)(x)
x = BatchNormalization(axis=-1, name="conv_pw_1_bn")(x)
x = ReLU6(x, name="conv_pw_1_relu")
x = DepthwiseConv2D(
(3, 3),
padding="same",
depth_multiplier=1,
strides=(2, 2),
use_bias=False,
name="conv_dw_2",
)(x)
x = BatchNormalization(axis=-1, name="conv_dw_2_bn")(x)
x = ReLU6(x, name="conv_dw_2_relu")
x = Conv2D(
8, (1, 1), padding="same", use_bias=False, strides=(2, 2), name="conv_pw_2"
)(x)
x = BatchNormalization(axis=-1, name="conv_pw_2_bn")(x)
x = ReLU6(x, name="conv_pw_2_relu")
model = Model(inputs=[img_input], outputs=[x])
self._test_model(model, delta=1e-2, model_precision=model_precision)
示例13: InvertedResidualBlock
# 需要导入模块: from keras.applications import mobilenet [as 别名]
# 或者: from keras.applications.mobilenet import DepthwiseConv2D [as 别名]
def InvertedResidualBlock(x, expand, out_channels, repeats, stride, weight_decay, block_id):
'''
This function defines a sequence of 1 or more identical layers, referring to Table 2 in the original paper.
:param x: Input Keras tensor in (B, H, W, C_in)
:param expand: expansion factor in bottlenect residual block
:param out_channels: number of channels in the output tensor
:param repeats: number of times to repeat the inverted residual blocks including the one that changes the dimensions.
:param stride: stride for the 1x1 convolution
:param weight_decay: hyperparameter for the l2 penalty
:param block_id: as its name tells
:return: Output tensor (B, H_new, W_new, out_channels)
'''
channel_axis = 1 if K.image_data_format() == 'channels_first' else -1
in_channels = K.int_shape(x)[channel_axis]
x = Conv2D(expand * in_channels, 1, padding='same', strides=stride, use_bias=False,
kernel_regularizer=l2(weight_decay), name='conv_%d_0' % block_id)(x)
x = BatchNormalization(epsilon=1e-5, momentum=0.9, name='conv_%d_0_bn' % block_id)(x)
x = Relu6(x, name='conv_%d_0_act_1' % block_id)
x = DepthwiseConv2D((3, 3),
padding='same',
depth_multiplier=1,
strides=1,
use_bias=False,
kernel_regularizer=l2(weight_decay),
name='conv_dw_%d_0' % block_id )(x)
x = BatchNormalization(axis=channel_axis, epsilon=1e-5, momentum=0.9, name='conv_dw_%d_0_bn' % block_id)(x)
x = Relu6(x, name='conv_%d_0_act_2' % block_id)
x = Conv2D(out_channels, 1, padding='same', strides=1, use_bias=False,
kernel_regularizer=l2(weight_decay), name='conv_bottleneck_%d_0' % block_id)(x)
x = BatchNormalization(axis=channel_axis, epsilon=1e-5, momentum=0.9, name='conv_bottlenet_%d_0_bn' % block_id)(x)
for i in xrange(1, repeats):
x1 = Conv2D(expand*out_channels, 1, padding='same', strides=1, use_bias=False,
kernel_regularizer=l2(weight_decay), name='conv_%d_%d' % (block_id, i))(x)
x1 = BatchNormalization(axis=channel_axis, epsilon=1e-5,momentum=0.9,name='conv_%d_%d_bn' % (block_id, i))(x1)
x1 = Relu6(x1,name='conv_%d_%d_act_1' % (block_id, i))
x1 = DepthwiseConv2D((3, 3),
padding='same',
depth_multiplier=1,
strides=1,
use_bias=False,
kernel_regularizer=l2(weight_decay),
name='conv_dw_%d_%d' % (block_id, i))(x1)
x1 = BatchNormalization(axis=channel_axis, epsilon=1e-5,momentum=0.9, name='conv_dw_%d_%d_bn' % (block_id, i))(x1)
x1 = Relu6(x1, name='conv_dw_%d_%d_act_2' % (block_id, i))
x1 = Conv2D(out_channels, 1, padding='same', strides=1, use_bias=False,
kernel_regularizer=l2(weight_decay),name='conv_bottleneck_%d_%d' % (block_id, i))(x1)
x1 = BatchNormalization(axis=channel_axis, epsilon=1e-5, momentum=0.9, name='conv_bottlenet_%d_%d_bn' % (block_id, i))(x1)
x = add([x, x1], name='block_%d_%d_output' % (block_id, i))
return x