本文整理汇总了Python中keras.applications.inception_resnet_v2.preprocess_input方法的典型用法代码示例。如果您正苦于以下问题:Python inception_resnet_v2.preprocess_input方法的具体用法?Python inception_resnet_v2.preprocess_input怎么用?Python inception_resnet_v2.preprocess_input使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类keras.applications.inception_resnet_v2
的用法示例。
在下文中一共展示了inception_resnet_v2.preprocess_input方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: data
# 需要导入模块: from keras.applications import inception_resnet_v2 [as 别名]
# 或者: from keras.applications.inception_resnet_v2 import preprocess_input [as 别名]
def data():
train_datagen = ImageDataGenerator(shear_range=0.2,
rotation_range=20.,
width_shift_range=0.3,
height_shift_range=0.3,
zoom_range=0.2,
horizontal_flip=True,
preprocessing_function=preprocess_input)
test_datagen = ImageDataGenerator(preprocessing_function=preprocess_input)
train_generator = train_datagen.flow_from_directory(train_data, (img_width, img_height), batch_size=batch_size,
class_mode='categorical', shuffle=True)
validation_generator = test_datagen.flow_from_directory(valid_data, (img_width, img_height), batch_size=batch_size,
class_mode='categorical', shuffle=True)
return train_generator, validation_generator
示例2: __getitem__
# 需要导入模块: from keras.applications import inception_resnet_v2 [as 别名]
# 或者: from keras.applications.inception_resnet_v2 import preprocess_input [as 别名]
def __getitem__(self, idx):
i = idx * batch_size
length = min(batch_size, (len(self.samples) - i))
batch_inputs = np.empty((3, length, img_size, img_size, channel), dtype=np.float32)
batch_dummy_target = np.zeros((length, embedding_size * 3), dtype=np.float32)
for i_batch in range(length):
sample = self.samples[i + i_batch]
for j, role in enumerate(['a', 'p', 'n']):
image_name = sample[role]
filename = os.path.join(self.image_folder, image_name)
image = cv.imread(filename) # BGR
image = image[:, :, ::-1] # RGB
dets = self.detector(image, 1)
num_faces = len(dets)
if num_faces > 0:
# Find the 5 face landmarks we need to do the alignment.
faces = dlib.full_object_detections()
for detection in dets:
faces.append(self.sp(image, detection))
image = dlib.get_face_chip(image, faces[0], size=img_size)
else:
image = cv.resize(image, (img_size, img_size), cv.INTER_CUBIC)
if self.usage == 'train':
image = aug_pipe.augment_image(image)
batch_inputs[j, i_batch] = preprocess_input(image)
return [batch_inputs[0], batch_inputs[1], batch_inputs[2]], batch_dummy_target
示例3: run
# 需要导入模块: from keras.applications import inception_resnet_v2 [as 别名]
# 或者: from keras.applications.inception_resnet_v2 import preprocess_input [as 别名]
def run(self):
# set enviornment
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = str(self.gpuid)
print("InferenceWorker init, GPU ID: {}".format(self.gpuid))
from model import build_model
# load models
model_weights_path = 'models/model.00-0.0296.hdf5'
model = build_model()
model.load_weights(model_weights_path)
while True:
try:
try:
item = self.in_queue.get(block=False)
except queue.Empty:
continue
image_name_0, image_name_1, image_name_2 = item
filename = os.path.join(image_folder, image_name_0)
image_bgr = cv.imread(filename)
image_bgr = cv.resize(image_bgr, (img_size, img_size), cv.INTER_CUBIC)
image_rgb = cv.cvtColor(image_bgr, cv.COLOR_BGR2RGB)
image_rgb_0 = preprocess_input(image_rgb)
filename = os.path.join(image_folder, image_name_1)
image_bgr = cv.imread(filename)
image_bgr = cv.resize(image_bgr, (img_size, img_size), cv.INTER_CUBIC)
image_rgb = cv.cvtColor(image_bgr, cv.COLOR_BGR2RGB)
image_rgb_1 = preprocess_input(image_rgb)
filename = os.path.join(image_folder, image_name_2)
image_bgr = cv.imread(filename)
image_bgr = cv.resize(image_bgr, (img_size, img_size), cv.INTER_CUBIC)
image_rgb = cv.cvtColor(image_bgr, cv.COLOR_BGR2RGB)
image_rgb_2 = preprocess_input(image_rgb)
batch_inputs = np.empty((3, 1, img_size, img_size, 3), dtype=np.float32)
batch_inputs[0] = image_rgb_0
batch_inputs[1] = image_rgb_1
batch_inputs[2] = image_rgb_2
y_pred = model.predict([batch_inputs[0], batch_inputs[1], batch_inputs[2]])
a = y_pred[0, 0:128]
p = y_pred[0, 128:256]
n = y_pred[0, 256:384]
self.out_queue.put({'image_name': image_name_0, 'embedding': a})
self.out_queue.put({'image_name': image_name_1, 'embedding': p})
self.out_queue.put({'image_name': image_name_2, 'embedding': n})
if self.in_queue.qsize() == 0:
break
except Exception as e:
print(e)
import keras.backend as K
K.clear_session()
print('InferenceWorker done, GPU ID {}'.format(self.gpuid))
示例4: run
# 需要导入模块: from keras.applications import inception_resnet_v2 [as 别名]
# 或者: from keras.applications.inception_resnet_v2 import preprocess_input [as 别名]
def run(self):
# set enviornment
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = str(self.gpuid)
print("InferenceWorker init, GPU ID: {}".format(self.gpuid))
from model import build_model
# load models
model = build_model()
model.load_weights(get_best_model())
while True:
try:
sample = {}
try:
sample['a'] = self.in_queue.get(block=False)
sample['p'] = self.in_queue.get(block=False)
sample['n'] = self.in_queue.get(block=False)
except queue.Empty:
break
batch_inputs = np.empty((3, 1, img_size, img_size, channel), dtype=np.float32)
for j, role in enumerate(['a', 'p', 'n']):
image_name = sample[role]
filename = os.path.join(image_folder, image_name)
image_bgr = cv.imread(filename)
image_bgr = cv.resize(image_bgr, (img_size, img_size), cv.INTER_CUBIC)
image_rgb = cv.cvtColor(image_bgr, cv.COLOR_BGR2RGB)
batch_inputs[j, 0] = preprocess_input(image_rgb)
y_pred = model.predict([batch_inputs[0], batch_inputs[1], batch_inputs[2]])
a = y_pred[0, 0:128]
p = y_pred[0, 128:256]
n = y_pred[0, 256:384]
self.out_queue.put({'image_name': sample['a'], 'embedding': a})
self.out_queue.put({'image_name': sample['p'], 'embedding': p})
self.out_queue.put({'image_name': sample['n'], 'embedding': n})
self.signal_queue.put(SENTINEL)
if self.in_queue.qsize() == 0:
break
except Exception as e:
print(e)
import keras.backend as K
K.clear_session()
print('InferenceWorker done, GPU ID {}'.format(self.gpuid))
示例5: train
# 需要导入模块: from keras.applications import inception_resnet_v2 [as 别名]
# 或者: from keras.applications.inception_resnet_v2 import preprocess_input [as 别名]
def train(task):
if (task == 'design'):
task_list = task_list_design
else:
task_list = task_list_length
label_names = list(task_list.keys())
print(n)
y = [np.zeros((n, task_list[x])) for x in task_list.keys()]
for i in range(n):
label_name = df.label_name[i]
label = df.label[i]
y[label_names.index(label_name)][i, label.find('y')] = 1
X = getX()
n_train = int(n * 0.9)
X_train = X[:n_train]
X_valid = X[n_train:]
y_train = [x[:n_train] for x in y]
y_valid = [x[n_train:] for x in y]
gen_train = Generator(X_train, y_train, batch_size=40, aug=True)
base_model = inception_v4.create_model(weights='imagenet', width=width, include_top=False)
input_tensor = Input((width, width, 3))
x = input_tensor
x = Lambda(preprocess_input, name='preprocessing')(x)
x = base_model(x)
x = GlobalAveragePooling2D()(x)
x = Dropout(0.5)(x)
x = [Dense(count, activation='softmax', name=name)(x) for name, count in task_list.items()]
model = Model(input_tensor, x)
# model.load_weights('models/base.h5',by_name=True)
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['acc'])
model2 = multi_gpu_model(model, 2)
model2.compile(optimizer=Adam(0.0001), loss='categorical_crossentropy', metrics=[acc])
model2.fit_generator(gen_train.generator, steps_per_epoch=gen_train.steps, epochs=3, validation_data=(X_valid, y_valid))
model2.compile(optimizer=Adam(0.000025), loss='categorical_crossentropy', metrics=[acc])
model2.fit_generator(gen_train.generator, steps_per_epoch=gen_train.steps, epochs=2, validation_data=(X_valid, y_valid))
model2.compile(optimizer=Adam(0.00000625), loss='categorical_crossentropy', metrics=[acc])
model2.fit_generator(gen_train.generator, steps_per_epoch=gen_train.steps, epochs=3, validation_data=(X_valid, y_valid))
model2.compile(optimizer=Adam(0.00000425), loss='categorical_crossentropy', metrics=[acc])
model2.fit_generator(gen_train.generator, steps_per_epoch=gen_train.steps, epochs=1, validation_data=(X_valid, y_valid))
model2.compile(optimizer=Adam(0.000001), loss='categorical_crossentropy', metrics=[acc])
model2.fit_generator(gen_train.generator, steps_per_epoch=gen_train.steps, epochs=1, validation_data=(X_valid, y_valid))
model.save_weights('models/%s.h5' % model_name)
del X
del model
gc.collect()
# load the label file and split it into two portions
示例6: calculate_inception_score
# 需要导入模块: from keras.applications import inception_resnet_v2 [as 别名]
# 或者: from keras.applications.inception_resnet_v2 import preprocess_input [as 别名]
def calculate_inception_score(images_path, batch_size=1, splits=10):
# Create an instance of InceptionV3
model = InceptionResNetV2()
images = None
for image_ in glob.glob(images_path):
# Load image
loaded_image = image.load_img(image_, target_size=(299, 299))
# Convert PIL image to numpy ndarray
loaded_image = image.img_to_array(loaded_image)
# Another another dimension (Add batch dimension)
loaded_image = np.expand_dims(loaded_image, axis=0)
# Concatenate all images into one tensor
if images is None:
images = loaded_image
else:
images = np.concatenate([images, loaded_image], axis=0)
# Calculate number of batches
num_batches = (images.shape[0] + batch_size - 1) // batch_size
probs = None
# Use InceptionV3 to calculate probabilities
for i in range(num_batches):
image_batch = images[i * batch_size:(i + 1) * batch_size, :, :, :]
prob = model.predict(preprocess_input(image_batch))
if probs is None:
probs = prob
else:
probs = np.concatenate([prob, probs], axis=0)
# Calculate Inception scores
divs = []
split_size = probs.shape[0] // splits
for i in range(splits):
prob_batch = probs[(i * split_size):((i + 1) * split_size), :]
p_y = np.expand_dims(np.mean(prob_batch, 0), 0)
div = prob_batch * (np.log(prob_batch / p_y))
div = np.mean(np.sum(div, 1))
divs.append(np.exp(div))
return np.mean(divs), np.std(divs)