本文整理汇总了Python中keras.applications.InceptionV3方法的典型用法代码示例。如果您正苦于以下问题:Python applications.InceptionV3方法的具体用法?Python applications.InceptionV3怎么用?Python applications.InceptionV3使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类keras.applications
的用法示例。
在下文中一共展示了applications.InceptionV3方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: executeKerasInceptionV3
# 需要导入模块: from keras import applications [as 别名]
# 或者: from keras.applications import InceptionV3 [as 别名]
def executeKerasInceptionV3(image_df, uri_col="filePath"):
"""
Apply Keras InceptionV3 Model on input DataFrame.
:param image_df: Dataset. contains a column (uri_col) for where the image file lives.
:param uri_col: str. name of the column indicating where each row's image file lives.
:return: ({str => np.array[float]}, {str => (str, str, float)}).
image file uri to prediction probability array,
image file uri to top K predictions (class id, class description, probability).
"""
K.set_learning_phase(0)
model = InceptionV3(weights="imagenet")
values = {}
topK = {}
for row in image_df.select(uri_col).collect():
raw_uri = row[uri_col]
image = loadAndPreprocessKerasInceptionV3(raw_uri)
values[raw_uri] = model.predict(image)
topK[raw_uri] = decode_predictions(values[raw_uri], top=5)[0]
return values, topK
示例2: test_load_image_vs_keras_RGB
# 需要导入模块: from keras import applications [as 别名]
# 或者: from keras.applications import InceptionV3 [as 别名]
def test_load_image_vs_keras_RGB(self):
g = tf.Graph()
with g.as_default():
image_arr = utils.imageInputPlaceholder()
# keras expects array in RGB order, we get it from image schema in BGR => need to flip
preprocessed = preprocess_input(image_arr)
output_col = "transformed_image"
transformer = TFImageTransformer(channelOrder='RGB', inputCol="image", outputCol=output_col, graph=g,
inputTensor=image_arr, outputTensor=preprocessed.name,
outputMode="vector")
image_df = image_utils.getSampleImageDF()
df = transformer.transform(image_df.limit(5))
for row in df.collect():
processed = np.array(row[output_col], dtype = np.float32)
# compare to keras loading
images = self._loadImageViaKeras(row["image"]['origin'])
image = images[0]
image.shape = (1, image.shape[0] * image.shape[1] * image.shape[2])
keras_processed = image[0]
np.testing.assert_array_almost_equal(keras_processed, processed, decimal = 6)
# Test full pre-processing for InceptionV3 as an example of a simple computation graph
示例3: test_image_output
# 需要导入模块: from keras import applications [as 别名]
# 或者: from keras.applications import InceptionV3 [as 别名]
def test_image_output(self):
output_col = "resized_image"
preprocessed_df = self._preprocessingInceptionV3Transformed("image", output_col)
self.assertDfHasCols(preprocessed_df, [output_col])
for row in preprocessed_df.collect():
original = row["image"]
processed = row[output_col]
errMsg = "nChannels must match: original {} v.s. processed {}"
errMsg = errMsg.format(original.nChannels, processed.nChannels)
self.assertEqual(original.nChannels, processed.nChannels, errMsg)
self.assertEqual(processed.height, InceptionV3Constants.INPUT_SHAPE[0])
self.assertEqual(processed.width, InceptionV3Constants.INPUT_SHAPE[1])
# TODO: add tests for non-RGB8 images, at least RGB-float32.
# Test InceptionV3 prediction as an example of applying a trained model.
示例4: prepInceptionV3KerasModelFile
# 需要导入模块: from keras import applications [as 别名]
# 或者: from keras.applications import InceptionV3 [as 别名]
def prepInceptionV3KerasModelFile(fileName):
model_dir_tmp = tempfile.mkdtemp("sparkdl_keras_tests", dir="/tmp")
path = model_dir_tmp + "/" + fileName
height, width = InceptionV3Constants.INPUT_SHAPE
input_shape = (height, width, 3)
model = InceptionV3(weights="imagenet", include_top=True, input_shape=input_shape)
model.save(path)
return path
示例5: test_prediction_vs_tensorflow_inceptionV3
# 需要导入模块: from keras import applications [as 别名]
# 或者: from keras.applications import InceptionV3 [as 别名]
def test_prediction_vs_tensorflow_inceptionV3(self):
output_col = "prediction"
image_df = image_utils.getSampleImageDF()
# An example of how a pre-trained keras model can be used with TFImageTransformer
with KSessionWrap() as (sess, g):
with g.as_default():
K.set_learning_phase(0) # this is important but it's on the user to call it.
# nChannels needed for input_tensor in the InceptionV3 call below
image_string = utils.imageInputPlaceholder(nChannels=3)
resized_images = tf.image.resize_images(image_string,
InceptionV3Constants.INPUT_SHAPE)
# keras expects array in RGB order, we get it from image schema in BGR =>
# need to flip
preprocessed = preprocess_input(imageIO._reverseChannels(resized_images))
model = InceptionV3(input_tensor=preprocessed, weights="imagenet")
graph = tfx.strip_and_freeze_until([model.output], g, sess, return_graph=True)
transformer = TFImageTransformer(channelOrder='BGR', inputCol="image", outputCol=output_col, graph=graph,
inputTensor=image_string, outputTensor=model.output,
outputMode="vector")
transformed_df = transformer.transform(image_df.limit(10))
self.assertDfHasCols(transformed_df, [output_col])
collected = transformed_df.collect()
transformer_values, transformer_topK = self.transformOutputToComparables(collected,
output_col, lambda row: row['image']['origin'])
tf_values, tf_topK = self._executeTensorflow(graph, image_string.name, model.output.name,
image_df)
self.compareClassSets(tf_topK, transformer_topK)
self.compareClassOrderings(tf_topK, transformer_topK)
self.compareArrays(tf_values, transformer_values, decimal=5)
示例6: test_keras_consistency
# 需要导入模块: from keras import applications [as 别名]
# 或者: from keras.applications import InceptionV3 [as 别名]
def test_keras_consistency(self):
""" Exported model in Keras should get same result as original """
img_fpaths = glob(os.path.join(_getSampleJPEGDir(), '*.jpg'))
def keras_load_and_preproc(fpath):
img = load_img(fpath, target_size=(299, 299))
img_arr = img_to_array(img)
img_iv3_input = iv3.preprocess_input(img_arr)
return np.expand_dims(img_iv3_input, axis=0)
imgs_iv3_input = np.vstack([keras_load_and_preproc(fp) for fp in img_fpaths])
model_ref = InceptionV3(weights="imagenet")
preds_ref = model_ref.predict(imgs_iv3_input)
with IsolatedSession(using_keras=True) as issn:
K.set_learning_phase(0)
model = InceptionV3(weights="imagenet")
gfn = issn.asGraphFunction(model.inputs, model.outputs)
with IsolatedSession(using_keras=True) as issn:
K.set_learning_phase(0)
feeds, fetches = issn.importGraphFunction(gfn, prefix="InceptionV3")
preds_tgt = issn.run(fetches[0], {feeds[0]: imgs_iv3_input})
np.testing.assert_array_almost_equal(preds_tgt, preds_ref, decimal=5)
示例7: test_bare_keras_module
# 需要导入模块: from keras import applications [as 别名]
# 或者: from keras.applications import InceptionV3 [as 别名]
def test_bare_keras_module(self):
""" Keras GraphFunctions should give the same result as standard Keras models """
img_fpaths = glob(os.path.join(_getSampleJPEGDir(), '*.jpg'))
for model_gen, preproc_fn, target_size in [(InceptionV3, iv3.preprocess_input, model_sizes['InceptionV3']),
(Xception, xcpt.preprocess_input, model_sizes['Xception']),
(ResNet50, rsnt.preprocess_input, model_sizes['ResNet50'])]:
keras_model = model_gen(weights="imagenet")
_preproc_img_list = []
for fpath in img_fpaths:
img = load_img(fpath, target_size=target_size)
# WARNING: must apply expand dimensions first, or ResNet50 preprocessor fails
img_arr = np.expand_dims(img_to_array(img), axis=0)
_preproc_img_list.append(preproc_fn(img_arr))
imgs_input = np.vstack(_preproc_img_list)
preds_ref = keras_model.predict(imgs_input)
gfn_bare_keras = GraphFunction.fromKeras(keras_model)
with IsolatedSession(using_keras=True) as issn:
K.set_learning_phase(0)
feeds, fetches = issn.importGraphFunction(gfn_bare_keras)
preds_tgt = issn.run(fetches[0], {feeds[0]: imgs_input})
np.testing.assert_array_almost_equal(preds_tgt,
preds_ref,
decimal=self.featurizerCompareDigitsExact)
示例8: __init__
# 需要导入模块: from keras import applications [as 别名]
# 或者: from keras.applications import InceptionV3 [as 别名]
def __init__(self, input_size):
input_image = Input(shape=(input_size, input_size, 3))
inception = InceptionV3(input_shape=(input_size,input_size,3), include_top=False)
inception.load_weights(INCEPTION3_BACKEND_PATH)
x = inception(input_image)
self.feature_extractor = Model(input_image, x)
示例9: load_fine_tune_googlenet_v3
# 需要导入模块: from keras import applications [as 别名]
# 或者: from keras.applications import InceptionV3 [as 别名]
def load_fine_tune_googlenet_v3(img):
# 加载fine-tuning googlenet v3模型,并做预测
model = InceptionV3(include_top=True, weights='imagenet')
model.summary()
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
preds = model.predict(x)
print('Predicted:', decode_predictions(preds))
plt.subplot(212)
plt.plot(preds.ravel())
plt.show()
return model, x
示例10: test_validate_keras_inception
# 需要导入模块: from keras import applications [as 别名]
# 或者: from keras.applications import InceptionV3 [as 别名]
def test_validate_keras_inception(self):
input_tensor = Input(shape=(224, 224, 3))
model = InceptionV3(weights="imagenet", input_tensor=input_tensor)
file_name = "keras"+model.name+".pmml"
pmml_obj = KerasToPmml(model,dataSet="image",predictedClasses=[str(i) for i in range(1000)])
pmml_obj.export(open(file_name,'w'),0)
self.assertEqual(self.schema.is_valid(file_name), True)
示例11: create_model
# 需要导入模块: from keras import applications [as 别名]
# 或者: from keras.applications import InceptionV3 [as 别名]
def create_model():
#Data format:tensorflow,channels_last;theano,channels_last
if DATA_FORMAT=='channels_first':
INP_SHAPE=(3,299,299)
img_input=Input(shape=INP_SHAPE)
CONCAT_AXIS=1
elif DATA_FORMAT=='channels_last':
INP_SHAPE=(299,299,3)
img_input=Input(shape=INP_SHAPE)
CONCAT_AXIS=3
else:
raise Exception('Invalid Dim Ordering')
base_model = InceptionV3(weights='imagenet', include_top=False)
base_model.summary()
for layer in base_model.layers:
layer.trainable = False
x = base_model.get_layer('mixed7').output
x = Convolution2D(512, (1, 1), kernel_initializer="glorot_uniform", padding="same", name="DenseNet_initial_conv2D", use_bias=False,
kernel_regularizer=l2(WEIGHT_DECAY))(x)
x = BatchNormalization()(x)
x, nb_filter = dense_block(x, 5, 512, growth_rate=64,dropout_rate=0.5)
x = AveragePooling2D(pool_size=(7, 7), strides=1, padding='valid', data_format=DATA_FORMAT)(x)
x = Dense(512, activation='relu')(x)
#x = Dropout(0.5)(x)
x = Dense(16)(x)
x = Lambda(lambda x:tf.nn.l2_normalize(x))(x)
model = Model(inputs=base_model.input, outputs=x)
return model
示例12: test_inceptionv3
# 需要导入模块: from keras import applications [as 别名]
# 或者: from keras.applications import InceptionV3 [as 别名]
def test_inceptionv3():
app = applications.InceptionV3
last_dim = 2048
_test_application_basic(app)
_test_application_notop(app, last_dim)
_test_application_variable_input_channels(app, last_dim)
_test_app_pooling(app, last_dim)
示例13: load_model
# 需要导入模块: from keras import applications [as 别名]
# 或者: from keras.applications import InceptionV3 [as 别名]
def load_model(self, model_path, pretrained=False):
self.pretrained = pretrained
if not pretrained:
try:
if os.path.isfile(model_path):
self.model = load_model(model_path)
print('[+] Model loading complete')
else:
print('[-] Model loading incomplete, could not find model - {}'.format(model_path))
except Exception as err:
print('[-] Model loading unsuccessful, please check your model file:')
print(err)
else:
from keras.applications import InceptionV3
self.model = InceptionV3(weights='imagenet')
# a "begin" marker to time how long it takes (in real time) to compile
start_compile = d.now()
# actually compile the model
self.model.compile(
loss=l_type,
optimizer=opt,
metrics=met
)
# a calculation of the compile time, in seconds
compile_time = (d.now() - start_compile).total_seconds()
print('[+] Model successfully compiled in {:.3f} seconds'.format(compile_time))
# a method for loading in the data given path (and many optional arguments)
# note, this data path should point to a folder with the data
示例14: make_model
# 需要导入模块: from keras import applications [as 别名]
# 或者: from keras.applications import InceptionV3 [as 别名]
def make_model(model, image_size):
if model == "inceptionv3":
base_model = InceptionV3(include_top=False, input_shape=image_size + (3,))
elif model == "vgg16" or model is None:
base_model = VGG16(include_top=False, input_shape=image_size + (3,))
elif model == "mobilenet":
base_model = MobileNet(include_top=False, input_shape=image_size + (3,))
return base_model
示例15: get_imagenet_architecture
# 需要导入模块: from keras import applications [as 别名]
# 或者: from keras.applications import InceptionV3 [as 别名]
def get_imagenet_architecture(architecture, variant, size, alpha, output_layer, include_top=False, weights='imagenet'):
from keras import applications, Model
if include_top:
assert output_layer == 'last'
if size == 'auto':
size = get_image_size(architecture, variant, size)
shape = (size, size, 3)
if architecture == 'densenet':
if variant == 'auto':
variant = 'densenet-121'
if variant == 'densenet-121':
model = applications.DenseNet121(weights=weights, include_top=include_top, input_shape=shape)
elif variant == 'densenet-169':
model = applications.DenseNet169(weights=weights, include_top=include_top, input_shape=shape)
elif variant == 'densenet-201':
model = applications.DenseNet201(weights=weights, include_top=include_top, input_shape=shape)
elif architecture == 'inception-resnet-v2':
model = applications.InceptionResNetV2(weights=weights, include_top=include_top, input_shape=shape)
elif architecture == 'mobilenet':
model = applications.MobileNet(weights=weights, include_top=include_top, input_shape=shape, alpha=alpha)
elif architecture == 'mobilenet-v2':
model = applications.MobileNetV2(weights=weights, include_top=include_top, input_shape=shape, alpha=alpha)
elif architecture == 'nasnet':
if variant == 'auto':
variant = 'large'
if variant == 'large':
model = applications.NASNetLarge(weights=weights, include_top=include_top, input_shape=shape)
else:
model = applications.NASNetMobile(weights=weights, include_top=include_top, input_shape=shape)
elif architecture == 'resnet-50':
model = applications.ResNet50(weights=weights, include_top=include_top, input_shape=shape)
elif architecture == 'vgg-16':
model = applications.VGG16(weights=weights, include_top=include_top, input_shape=shape)
elif architecture == 'vgg-19':
model = applications.VGG19(weights=weights, include_top=include_top, input_shape=shape)
elif architecture == 'xception':
model = applications.Xception(weights=weights, include_top=include_top, input_shape=shape)
elif architecture == 'inception-v3':
model = applications.InceptionV3(weights=weights, include_top=include_top, input_shape=shape)
if output_layer != 'last':
try:
if isinstance(output_layer, int):
layer = model.layers[output_layer]
else:
layer = model.get_layer(output_layer)
except Exception:
raise VergeMLError('layer not found: {}'.format(output_layer))
model = Model(inputs=model.input, outputs=layer.output)
return model