本文整理汇总了Python中keras.activations.relu方法的典型用法代码示例。如果您正苦于以下问题:Python activations.relu方法的具体用法?Python activations.relu怎么用?Python activations.relu使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类keras.activations
的用法示例。
在下文中一共展示了activations.relu方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: train_model
# 需要导入模块: from keras import activations [as 别名]
# 或者: from keras.activations import relu [as 别名]
def train_model():
if cxl_model:
embedding_matrix = load_embedding()
else:
embedding_matrix = {}
train, label = vocab_train_label(train_path, vocab=vocab, tags=tag, max_chunk_length=length)
n = np.array(label, dtype=np.float)
labels = n.reshape((n.shape[0], n.shape[1], 1))
model = Sequential([
Embedding(input_dim=len(vocab), output_dim=300, mask_zero=True, input_length=length, weights=[embedding_matrix],
trainable=False),
SpatialDropout1D(0.2),
Bidirectional(layer=LSTM(units=150, return_sequences=True, dropout=0.2, recurrent_dropout=0.2)),
TimeDistributed(Dense(len(tag), activation=relu)),
])
crf_ = CRF(units=len(tag), sparse_target=True)
model.add(crf_)
model.compile(optimizer=Adam(), loss=crf_.loss_function, metrics=[crf_.accuracy])
model.fit(x=np.array(train), y=labels, batch_size=16, epochs=4, callbacks=[RemoteMonitor()])
model.save(model_path)
示例2: test_relu
# 需要导入模块: from keras import activations [as 别名]
# 或者: from keras.activations import relu [as 别名]
def test_relu():
'''
Relu implementation doesn't depend on the value being
a theano variable. Testing ints, floats and theano tensors.
'''
from keras.activations import relu as r
assert r(5) == 5
assert r(-5) == 0
assert r(-0.1) == 0
assert r(0.1) == 0.1
x = T.vector()
exp = r(x)
f = theano.function([x], exp)
test_values = get_standard_values()
result = f(test_values)
list_assert_equal(result, test_values) # because no negatives in test values
示例3: wavenetBlock
# 需要导入模块: from keras import activations [as 别名]
# 或者: from keras.activations import relu [as 别名]
def wavenetBlock(n_atrous_filters, atrous_filter_size, atrous_rate,
n_conv_filters, conv_filter_size):
def f(input_):
residual = input_
tanh_out = AtrousConvolution1D(n_atrous_filters, atrous_filter_size,
atrous_rate=atrous_rate,
border_mode='same',
activation='tanh')(input_)
sigmoid_out = AtrousConvolution1D(n_atrous_filters, atrous_filter_size,
atrous_rate=atrous_rate,
border_mode='same',
activation='sigmoid')(input_)
merged = merge([tanh_out, sigmoid_out], mode='mul')
skip_out = Convolution1D(1, 1, activation='relu', border_mode='same')(merged)
out = merge([skip_out, residual], mode='sum')
return out, skip_out
return f
示例4: get_basic_generative_model
# 需要导入模块: from keras import activations [as 别名]
# 或者: from keras.activations import relu [as 别名]
def get_basic_generative_model(input_size):
input = Input(shape=(1, input_size, 1))
l1a, l1b = wavenetBlock(10, 5, 2, 1, 3)(input)
l2a, l2b = wavenetBlock(1, 2, 4, 1, 3)(l1a)
l3a, l3b = wavenetBlock(1, 2, 8, 1, 3)(l2a)
l4a, l4b = wavenetBlock(1, 2, 16, 1, 3)(l3a)
l5a, l5b = wavenetBlock(1, 2, 32, 1, 3)(l4a)
l6 = merge([l1b, l2b, l3b, l4b, l5b], mode='sum')
l7 = Lambda(relu)(l6)
l8 = Convolution2D(1, 1, 1, activation='relu')(l7)
l9 = Convolution2D(1, 1, 1)(l8)
l10 = Flatten()(l9)
l11 = Dense(1, activation='tanh')(l10)
model = Model(input=input, output=l11)
model.compile(loss='mse', optimizer='rmsprop', metrics=['accuracy'])
model.summary()
return model
示例5: fCreateMNet_Block
# 需要导入模块: from keras import activations [as 别名]
# 或者: from keras.activations import relu [as 别名]
def fCreateMNet_Block(input_t, channels, kernel_size=(3, 3), type=1, forwarding=True, l1_reg=0.0, l2_reg=1e-6):
tower_t = Conv2D(channels,
kernel_size=kernel_size,
kernel_initializer='he_normal',
weights=None,
padding='same',
strides=(1, 1),
kernel_regularizer=l1_l2(l1_reg, l2_reg),
)(input_t)
tower_t = Activation('relu')(tower_t)
for counter in range(1, type):
tower_t = Conv2D(channels,
kernel_size=kernel_size,
kernel_initializer='he_normal',
weights=None,
padding='same',
strides=(1, 1),
kernel_regularizer=l1_l2(l1_reg, l2_reg),
)(tower_t)
tower_t = Activation('relu')(tower_t)
if (forwarding):
tower_t = concatenate([tower_t, input_t], axis=1)
return tower_t
示例6: fCreateMNet_Block
# 需要导入模块: from keras import activations [as 别名]
# 或者: from keras.activations import relu [as 别名]
def fCreateMNet_Block(input_t, channels, kernel_size=(3,3), type=1, forwarding=True,l1_reg=0.0, l2_reg=1e-6 ):
tower_t = Conv2D(channels,
kernel_size=kernel_size,
kernel_initializer='he_normal',
weights=None,
padding='same',
strides=(1, 1),
kernel_regularizer=l1_l2(l1_reg, l2_reg),
)(input_t)
tower_t = Activation('relu')(tower_t)
for counter in range(1, type):
tower_t = Conv2D(channels,
kernel_size=kernel_size,
kernel_initializer='he_normal',
weights=None,
padding='same',
strides=(1, 1),
kernel_regularizer=l1_l2(l1_reg, l2_reg),
)(tower_t)
tower_t = Activation('relu')(tower_t)
if (forwarding):
tower_t = concatenate([tower_t, input_t], axis=1)
return tower_t
示例7: iris
# 需要导入模块: from keras import activations [as 别名]
# 或者: from keras.activations import relu [as 别名]
def iris():
from keras.optimizers import Adam, Nadam
from keras.losses import logcosh, categorical_crossentropy
from keras.activations import relu, elu, softmax
# here use a standard 2d dictionary for inputting the param boundaries
p = {'lr': (0.5, 5, 10),
'first_neuron': [4, 8, 16, 32, 64],
'hidden_layers': [0, 1, 2, 3, 4],
'batch_size': (2, 30, 10),
'epochs': [2],
'dropout': (0, 0.5, 5),
'weight_regulizer': [None],
'emb_output_dims': [None],
'shapes': ['brick', 'triangle', 0.2],
'optimizer': [Adam, Nadam],
'losses': [logcosh, categorical_crossentropy],
'activation': [relu, elu],
'last_activation': [softmax]}
return p
示例8: breast_cancer
# 需要导入模块: from keras import activations [as 别名]
# 或者: from keras.activations import relu [as 别名]
def breast_cancer():
from keras.optimizers import Adam, Nadam, RMSprop
from keras.losses import logcosh, binary_crossentropy
from keras.activations import relu, elu, sigmoid
# then we can go ahead and set the parameter space
p = {'lr': (0.5, 5, 10),
'first_neuron': [4, 8, 16, 32, 64],
'hidden_layers': [0, 1, 2],
'batch_size': (2, 30, 10),
'epochs': [50, 100, 150],
'dropout': (0, 0.5, 5),
'shapes': ['brick', 'triangle', 'funnel'],
'optimizer': [Adam, Nadam, RMSprop],
'losses': [logcosh, binary_crossentropy],
'activation': [relu, elu],
'last_activation': [sigmoid]}
return p
示例9: gcn_layer
# 需要导入模块: from keras import activations [as 别名]
# 或者: from keras.activations import relu [as 别名]
def gcn_layer(A_zkc_hat,D_zkc_hat, X ,W):
return relu(np.dot(np.dot(np.dot(D_zkc_hat**-1, A_zkc_hat), X), W))
示例10: prelu_block
# 需要导入模块: from keras import activations [as 别名]
# 或者: from keras.activations import relu [as 别名]
def prelu_block(use_prelu):
def f(x):
if use_prelu:
x = PReLU()(x)
else:
x = Lambda(relu)(x)
return x
return f
示例11: cnn_model
# 需要导入模块: from keras import activations [as 别名]
# 或者: from keras.activations import relu [as 别名]
def cnn_model():
(x_train, y_train), _ = mnist.load_data()
# 归一化
x_train = x_train.reshape(-1, 28, 28, 1) / 255.
# one-hot
y_train = np_utils.to_categorical(y=y_train, num_classes=10)
model = Sequential([
# input_shape:输入平面,就在第一个位置设置
# filters:卷积核、滤波器
# kernel_size:卷积核大小
# strides:步长
# padding有两种方式:same/valid
# activation:激活函数
Convolution2D(input_shape=(28, 28, 1), filters=32, kernel_size=5, strides=1, padding='same', activation=relu),
MaxPool2D(pool_size=2, strides=2, padding='same'),
Convolution2D(filters=64, kernel_size=5, padding='same', activation=relu),
MaxPool2D(pool_size=2, trainable=2, padding='same'),
Flatten(), # 扁平化
Dense(units=1024, activation=relu),
Dropout(0.5),
Dense(units=10, activation=softmax),
])
opt = Adam(lr=1e-4)
model.compile(optimizer=opt, loss=categorical_crossentropy, metrics=['accuracy'])
model.fit(x=x_train, y=y_train, batch_size=64, epochs=20, callbacks=[RemoteMonitor()])
model_save(model, './model.h5')
示例12: relu6
# 需要导入模块: from keras import activations [as 别名]
# 或者: from keras.activations import relu [as 别名]
def relu6(x):
return relu(x, max_value=6)
示例13: SepConv_BN
# 需要导入模块: from keras import activations [as 别名]
# 或者: from keras.activations import relu [as 别名]
def SepConv_BN(x, filters, prefix, stride=1, kernel_size=3, rate=1, depth_activation=False, epsilon=1e-3):
# 计算padding的数量,hw是否需要收缩
if stride == 1:
depth_padding = 'same'
else:
kernel_size_effective = kernel_size + (kernel_size - 1) * (rate - 1)
pad_total = kernel_size_effective - 1
pad_beg = pad_total // 2
pad_end = pad_total - pad_beg
x = ZeroPadding2D((pad_beg, pad_end))(x)
depth_padding = 'valid'
# 如果需要激活函数
if not depth_activation:
x = Activation('relu')(x)
# 分离卷积,首先3x3分离卷积,再1x1卷积
# 3x3采用膨胀卷积
x = DepthwiseConv2D((kernel_size, kernel_size), strides=(stride, stride), dilation_rate=(rate, rate),
padding=depth_padding, use_bias=False, name=prefix + '_depthwise')(x)
x = BatchNormalization(name=prefix + '_depthwise_BN', epsilon=epsilon)(x)
if depth_activation:
x = Activation('relu')(x)
# 1x1卷积,进行压缩
x = Conv2D(filters, (1, 1), padding='same',
use_bias=False, name=prefix + '_pointwise')(x)
x = BatchNormalization(name=prefix + '_pointwise_BN', epsilon=epsilon)(x)
if depth_activation:
x = Activation('relu')(x)
return x
示例14: temporal_convs_linear
# 需要导入模块: from keras import activations [as 别名]
# 或者: from keras.activations import relu [as 别名]
def temporal_convs_linear(n_nodes, conv_len, n_classes, n_feat, max_len,
causal=False, loss='categorical_crossentropy',
optimizer='adam', return_param_str=False):
""" Used in paper:
Segmental Spatiotemporal CNNs for Fine-grained Action Segmentation
Lea et al. ECCV 2016
Note: Spatial dropout was not used in the original paper.
It tends to improve performance a little.
"""
inputs = Input(shape=(max_len, n_feat))
if causal: model = ZeroPadding1D((conv_len // 2, 0))(model)
model = Conv1D(n_nodes, conv_len, input_dim=n_feat, input_length=max_len, padding='same',
activation='relu')(inputs)
if causal: model = Cropping1D((0, conv_len // 2))(model)
model = SpatialDropout1D(0.3)(model)
model = TimeDistributed(Dense(n_classes, activation="softmax"))(model)
model = Model(input=inputs, output=model)
model.compile(loss=loss, optimizer=optimizer, sample_weight_mode="temporal")
if return_param_str:
param_str = "tConv_C{}".format(conv_len)
if causal:
param_str += "_causal"
return model, param_str
else:
return model
示例15: model
# 需要导入模块: from keras import activations [as 别名]
# 或者: from keras.activations import relu [as 别名]
def model(self):
input_layer = Input(shape=self.SHAPE)
x = Convolution2D(96,3,3, subsample=(2,2), border_mode='same',activation='relu')(input_layer)
x = Convolution2D(64,3,3, subsample=(2,2), border_mode='same',activation='relu')(x)
x = MaxPooling2D(pool_size=(3,3),border_mode='same')(x)
x = Convolution2D(32,3,3, subsample=(1,1), border_mode='same',activation='relu')(x)
x = Convolution2D(32,1,1, subsample=(1,1), border_mode='same',activation='relu')(x)
x = Convolution2D(2,1,1, subsample=(1,1), border_mode='same',activation='relu')(x)
output_layer = Reshape((-1,2))(x)
return Model(input_layer,output_layer)