本文整理汇总了Python中json.load方法的典型用法代码示例。如果您正苦于以下问题:Python json.load方法的具体用法?Python json.load怎么用?Python json.load使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类json
的用法示例。
在下文中一共展示了json.load方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_props_write
# 需要导入模块: import json [as 别名]
# 或者: from json import load [as 别名]
def test_props_write(self):
announce('test_props_write')
report = True
self.env.pwrite(self.env.model_nm + ".props")
with open(self.env.model_nm + ".props", "r") as f:
props_written = json.load(f)
if len(props_written) != len(self.env.props.props):
report = False
if report:
for key in props_written:
if key not in self.env.props.props:
report = False
break
else:
if props_written[key]["val"] != self.env.props.props[key].val:
report = False
break
f.close()
os.remove(self.env.model_nm + ".props")
self.assertEqual(report, True)
示例2: get_prev_models
# 需要导入模块: import json [as 别名]
# 或者: from json import load [as 别名]
def get_prev_models(filepath):
"""
Reads from models.json, which also happens to be our DEST_FOLDER
If our DEST_FOLDER doesn't exist, it will just create the new file
Otherwise, it will read in the json,
so the script knows the model ID for exisiting models
"""
try:
with open(filepath, 'r') as input_stream:
try:
# Assumes models.json has DB_NAME that matches
# what the script expects
return json.load(input_stream)[DB_NAME]
except ValueError:
script_output("Invalid JSON in " + filepath)
exit(1)
except OSError:
script_output("Could not open " + filepath)
exit(1)
示例3: get_models
# 需要导入模块: import json [as 别名]
# 或者: from json import load [as 别名]
def get_models(model_files):
"""
return all the models from list of model files (.json) for processing
"""
model = []
for file in model_files:
if file.endswith("_model.json"):
with open(file, 'r') as input_stream:
try:
loadedData = json.load(input_stream)
if(len(loadedData) > 0):
model.append(loadedData)
except ValueError:
script_output("Invalid JSON in " + file)
exit(1)
else:
script_output("File does not end with _model.json found")
script_output(file, False)
exit(1)
return model
示例4: main
# 需要导入模块: import json [as 别名]
# 或者: from json import load [as 别名]
def main(args=None):
welcome = "Welcome to Indra! Please choose a model:"
stars = "*" * len(welcome)
model_db = None
model_list = None
with open("models.json", 'r') as f:
model_db = json.load(f)
model_list = model_db["models_database"]
while True:
print("\n",
stars, "\n",
welcome, "\n",
stars)
for choice, model in enumerate(model_list):
print(str(choice) + ". ", model["name"])
choice = int(input())
if 0 <= choice < len(model_list):
rdict[model_list[choice]["run"]]()
else:
return 0
示例5: _get_classes_from_json
# 需要导入模块: import json [as 别名]
# 或者: from json import load [as 别名]
def _get_classes_from_json(self):
for filename in ("labels.txt", "classes.json"):
path = os.path.join(self.samples_dir, filename)
if not os.path.exists(path):
raise VergeMLError("{} is missing".format(filename))
with open(path) as f:
if filename == "labels.txt":
items = filter(None, map(methodcaller("strip"), f.read().splitlines()))
labels = Labels(items)
else:
self.classes = json.load(f)
files = {}
# prefix the sample with input_dir
for k, v in self.classes['files'].items():
# on windows and linux, separator is /
path = k.split("/")
path.insert(0, self.samples_dir)
fname = os.path.join(*path)
files[fname] = v
self.classes['files'] = files
self.meta['labels'] = labels
示例6: __init__
# 需要导入模块: import json [as 别名]
# 或者: from json import load [as 别名]
def __init__(self, user_agent, token_url_template, platform):
self.user_agent = user_agent
self.token_url_template = token_url_template
self.platform = platform
self.session = requests.Session()
self.session.cookies = http.cookiejar.LWPCookieJar()
if not os.path.exists(COOKIE_FILE):
self.session.cookies.save(COOKIE_FILE)
self.session.cookies.load(COOKIE_FILE, ignore_discard=True)
self.session.headers = {"User-agent": user_agent}
if os.path.exists(SESSION_FILE):
self.load()
else:
self._state = {
'api_key': None,
'client_api_key': None,
'token': None,
'access_token': None,
'access_token_expiry': None
}
self.login()
示例7: assess
# 需要导入模块: import json [as 别名]
# 或者: from json import load [as 别名]
def assess(self, ctx: Context, challenge_num: int):
"""
Gets information about a specific CyberStart Assess level and challenge.
"""
NO_HINTS_MSG = f"**:warning: Remember, other people can't give hints after challenge {HINTS_LIMIT}**"
# Gather Assess data from JSON file.
with open("cdbot/data/assess.json") as f:
assess_docs = load(f)
if not 0 < challenge_num <= len(assess_docs):
await ctx.send("Invalid challenge number!")
else:
# Select the needed challenge
challenge_raw = assess_docs[challenge_num - 1]
challenge_title = challenge_raw["title"]
challenge_difficulty = challenge_raw["difficulty"]
challenge_text = challenge_raw["description"]
if challenge_num > HINTS_LIMIT:
challenge_text = NO_HINTS_MSG + "\n" + challenge_text
embed = Embed(
title=f"CyberStart Assess Challenge {challenge_num} - {challenge_title}",
description=challenge_text,
colour=0x4262F4,
url=f"https://assess.joincyberdiscovery.com/challenge-{challenge_num:02d}",
)
embed.set_author(name="Cyber Discovery", icon_url=CYBERDISC_ICON_URL)
embed.set_footer(text=f"Difficulty: {challenge_difficulty}")
await ctx.send(embed=embed)
示例8: read_config
# 需要导入模块: import json [as 别名]
# 或者: from json import load [as 别名]
def read_config(stream, env):
config = {}
try:
config['tags'] = json.load(stream)
except ValueError:
LOG.exception('Failed to decode JSON from input stream')
config['tags'] = {}
LOG.debug('Configuration after reading stream: %s', config)
config['context'] = {
'branch': env.get('BRANCH'),
'change': env.get('CHANGE'),
'commit': env.get('COMMIT'),
'ps': env.get('PATCHSET'),
}
LOG.info('Final configuration: %s', config)
return config
示例9: register
# 需要导入模块: import json [as 别名]
# 或者: from json import load [as 别名]
def register(self, name, serializer):
"""Register ``serializer`` object under ``name``.
Raises :class:`AttributeError` if ``serializer`` in invalid.
.. note::
``name`` will be used as the file extension of the saved files.
:param name: Name to register ``serializer`` under
:type name: ``unicode`` or ``str``
:param serializer: object with ``load()`` and ``dump()``
methods
"""
# Basic validation
getattr(serializer, 'load')
getattr(serializer, 'dump')
self._serializers[name] = serializer
示例10: filename_to_url
# 需要导入模块: import json [as 别名]
# 或者: from json import load [as 别名]
def filename_to_url(filename: str, cache_dir: Union[str, Path] = None) -> Tuple[str, str]:
"""
Return the url and etag (which may be ``None``) stored for `filename`.
Raise ``FileNotFoundError`` if `filename` or its stored metadata do not exist.
"""
if cache_dir is None:
cache_dir = PYTORCH_PRETRAINED_BERT_CACHE
if isinstance(cache_dir, Path):
cache_dir = str(cache_dir)
cache_path = os.path.join(cache_dir, filename)
if not os.path.exists(cache_path):
raise FileNotFoundError("file {} not found".format(cache_path))
meta_path = cache_path + '.json'
if not os.path.exists(meta_path):
raise FileNotFoundError("file {} not found".format(meta_path))
with open(meta_path) as meta_file:
metadata = json.load(meta_file)
url = metadata['url']
etag = metadata['etag']
return url, etag
示例11: build_from_pb
# 需要导入模块: import json [as 别名]
# 或者: from json import load [as 别名]
def build_from_pb(self):
with tf.gfile.FastGFile(self.FLAGS.pbLoad, "rb") as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
tf.import_graph_def(
graph_def,
name=""
)
with open(self.FLAGS.metaLoad, 'r') as fp:
self.meta = json.load(fp)
self.framework = create_framework(self.meta, self.FLAGS)
# Placeholders
self.inp = tf.get_default_graph().get_tensor_by_name('input:0')
self.feed = dict() # other placeholders
self.out = tf.get_default_graph().get_tensor_by_name('output:0')
self.setup_meta_ops()
示例12: savepb
# 需要导入模块: import json [as 别名]
# 或者: from json import load [as 别名]
def savepb(self):
"""
Create a standalone const graph def that
C++ can load and run.
"""
darknet_pb = self.to_darknet()
flags_pb = self.FLAGS
flags_pb.verbalise = False
flags_pb.train = False
# rebuild another tfnet. all const.
tfnet_pb = TFNet(flags_pb, darknet_pb)
tfnet_pb.sess = tf.Session(graph = tfnet_pb.graph)
# tfnet_pb.predict() # uncomment for unit testing
name = 'built_graph/{}.pb'.format(self.meta['name'])
os.makedirs(os.path.dirname(name), exist_ok=True)
#Save dump of everything in meta
with open('built_graph/{}.meta'.format(self.meta['name']), 'w') as fp:
json.dump(self.meta, fp)
self.say('Saving const graph def to {}'.format(name))
graph_def = tfnet_pb.sess.graph_def
tf.train.write_graph(graph_def,'./', name, False)
示例13: test_CLI_JSON_YOLOv1
# 需要导入模块: import json [as 别名]
# 或者: from json import load [as 别名]
def test_CLI_JSON_YOLOv1():
#Test predictions outputted to a JSON file using the YOLOv1 model through CLI
#NOTE: This test verifies that the code executes properly, the JSON file is created properly and the predictions generated are within a certain
# margin of error when compared to the expected predictions.
testString = "flow --imgdir {0} --model {1} --load {2} --config {3} --threshold 0.4 --json".format(os.path.dirname(testImg["path"]), yolo_small_CfgPath, yolo_small_WeightPath, generalConfigPath)
executeCLI(testString)
outputJSONPath = os.path.join(os.path.dirname(testImg["path"]), "out", os.path.splitext(os.path.basename(testImg["path"]))[0] + ".json")
assert os.path.exists(outputJSONPath), "Expected output JSON file: {0} was not found.".format(outputJSONPath)
with open(outputJSONPath) as json_file:
loadedPredictions = json.load(json_file)
assert compareObjectData(testImg["expected-objects"]["yolo-small"], loadedPredictions, testImg["width"], testImg["height"], threshCompareThreshold, posCompareThreshold), "Generated object predictions from JSON were not within margin of error compared to expected values."
os.remove(outputJSONPath) #Remove the JSON file so that it does not affect subsequent tests
示例14: test_vectors
# 需要导入模块: import json [as 别名]
# 或者: from json import load [as 别名]
def test_vectors():
with open("vectors.json", "r") as f:
vectors = json.load(f)
for description, mnemonics, secret in vectors:
if secret:
assert bytes.fromhex(secret) == shamir.combine_mnemonics(
mnemonics, b"TREZOR"
), 'Incorrect secret for test vector "{}".'.format(description)
else:
with pytest.raises(MnemonicError):
shamir.combine_mnemonics(mnemonics)
pytest.fail(
'Failed to raise exception for test vector "{}".'.format(
description
)
)
示例15: __init__
# 需要导入模块: import json [as 别名]
# 或者: from json import load [as 别名]
def __init__(self, config_file):
self.mode = None
self.vmac_mode = None
self.vmac_options = None
self.vnhs = None
self.refmon = None
self.flanc_auth = None
self.route_server = None
self.arp_proxy = None
self.peers = {}
# loading config file
config = json.load(open(config_file, 'r'))
# parse config
self.parse_config(config)