本文整理汇总了Python中itertools.chain.from_iterable方法的典型用法代码示例。如果您正苦于以下问题:Python chain.from_iterable方法的具体用法?Python chain.from_iterable怎么用?Python chain.from_iterable使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类itertools.chain
的用法示例。
在下文中一共展示了chain.from_iterable方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: visit_graph_items
# 需要导入模块: from itertools import chain [as 别名]
# 或者: from itertools.chain import from_iterable [as 别名]
def visit_graph_items(self, items):
invalid = [f for f in items
if not isinstance(f, self._graph_accept_types)]
if invalid:
self.errors.report(
'Graph can not contain these types: {}'
.format(self._format_types(invalid))
)
return
root = Root(list(chain.from_iterable(e.fields for e in items
if e.name is None)))
self.visit(root)
for item in items:
if item.name is not None:
self.visit(item)
duplicates = self._get_duplicates(e.name for e in items
if e.name is not None)
if duplicates:
self.errors.report('Duplicated nodes found in the graph: {}'
.format(self._format_names(duplicates)))
示例2: elements
# 需要导入模块: from itertools import chain [as 别名]
# 或者: from itertools.chain import from_iterable [as 别名]
def elements(self):
'''Iterator over elements repeating each as many times as its count.
>>> c = Counter('ABCABC')
>>> sorted(c.elements())
['A', 'A', 'B', 'B', 'C', 'C']
# Knuth's example for prime factors of 1836: 2**2 * 3**3 * 17**1
>>> prime_factors = Counter({2: 2, 3: 3, 17: 1})
>>> product = 1
>>> for factor in prime_factors.elements(): # loop over factors
... product *= factor # and multiply them
>>> product
1836
Note, if an element's count has been set to zero or is a negative
number, elements() will ignore it.
'''
# Emulate Bag.do from Smalltalk and Multiset.begin from C++.
return _chain.from_iterable(_starmap(_repeat, self.items()))
# Override dict methods where necessary
示例3: link_result_to_ids
# 需要导入模块: from itertools import chain [as 别名]
# 或者: from itertools.chain import from_iterable [as 别名]
def link_result_to_ids(from_list, link_type, result):
if from_list:
if link_type is Maybe:
return [i for i in result if i is not Nothing]
elif link_type is One:
if any(i is Nothing for i in result):
raise TypeError('Non-optional link should not return Nothing: '
'{!r}'.format(result))
return result
elif link_type is Many:
return list(chain.from_iterable(result))
else:
if link_type is Maybe:
return [] if result is Nothing else [result]
elif link_type is One:
if result is Nothing:
raise TypeError('Non-optional link should not return Nothing')
return [result]
elif link_type is Many:
return result
raise TypeError(repr([from_list, link_type]))
示例4: predict
# 需要导入模块: from itertools import chain [as 别名]
# 或者: from itertools.chain import from_iterable [as 别名]
def predict(self, query):
cache_query_key = ''.join(str(list(chain.from_iterable(query[0]))))
if cache_query_key in self.cached_res.keys():
return self.cached_res[cache_query_key]
input_ids, input_len = query
input_ids = torch.tensor(input_ids).to(self.device).unsqueeze(0)
input_len = torch.tensor(input_len).to(self.device).unsqueeze(0)
labels = None
_, pred_slot = self.sumbt_model(input_ids, input_len, labels)
pred_slot_t = pred_slot[0][-1].tolist()
predict_belief = []
for idx,i in enumerate(pred_slot_t):
predict_belief.append(f'{self.target_slot[idx]}-{self.label_map_inv[idx][i]}')
self.cached_res[cache_query_key] = predict_belief
return predict_belief
示例5: apply
# 需要导入模块: from itertools import chain [as 别名]
# 或者: from itertools.chain import from_iterable [as 别名]
def apply(self, solver, players_dict):
optimizer = self.optimizer
positions, spacing = optimizer.spacing_positions, optimizer.spacing
if not spacing or not positions:
return
players_by_roster_positions = defaultdict(list) # type: Dict[int, List[Tuple[Player, Any]]]
for player, variable in players_dict.items():
if player.roster_order is None or not list_intersection(player.positions, positions):
continue
players_by_roster_positions[player.roster_order].append((player, variable))
for roster_position, players in players_by_roster_positions.items():
next_restricted_roster_position = roster_position + spacing
restricted_players = chain.from_iterable(
players for players_spacing, players in players_by_roster_positions.items()
if players_spacing >= next_restricted_roster_position
)
for first_player, first_variable in restricted_players:
for second_player, second_variable in players:
if first_player.team != second_player.team:
continue
solver.add_constraint([first_variable, second_variable], None, SolverSign.LTE, 1)
示例6: build_stacks
# 需要导入模块: from itertools import chain [as 别名]
# 或者: from itertools.chain import from_iterable [as 别名]
def build_stacks(self, players: List[Player], optimizer: 'LineupOptimizer') -> List[OptimizerStack]:
players_by_teams = get_players_grouped_by_teams(players, for_teams=self.for_teams)
all_positions = tuple(set(chain.from_iterable(self.positions)))
positions_for_optimizer = Counter(self.positions)
positions_for_optimizer[all_positions] = len(self.positions)
all_groups = [] # type: List[BaseGroup]
for team_name, team_players in players_by_teams.items():
groups = []
for positions, total in positions_for_optimizer.items():
groups.append(PlayersGroup(
players=[player for player in team_players if list_intersection(player.positions, positions)],
min_from_group=total,
))
nested_group = NestedPlayersGroup(
groups=groups,
max_exposure=self.max_exposure_per_team.get(team_name, self.max_exposure),
)
all_groups.append(nested_group)
return [OptimizerStack(groups=all_groups)]
示例7: test_multi_get_max_retry
# 需要导入模块: from itertools import chain [as 别名]
# 或者: from itertools.chain import from_iterable [as 别名]
def test_multi_get_max_retry(self):
"""Tests the case when the number of the maximum retries is reached, due to the unsuccessful responses.
Request is repeated 3 times (based on `max_retry`), each time there is only one successful response.
Eventually the call to `multi_get` returns the responses among which one is unsuccessful (`None`).
"""
number_of_requests = 4
query_params = [{'John Fitzgerald': 'Tom Hardy'}] * number_of_requests
responses_to_calls = [
self.mock_ok_responses(number_of_requests),
self.mock_ok_responses(number_of_requests - 1),
self.mock_ok_responses(number_of_requests - 2),
]
# mock unsuccessful responses to the first call
self.mock_unsuccessful_responses(responses_to_calls[0][0:3])
# mock unsuccessful responses to the second call
self.mock_unsuccessful_responses(responses_to_calls[1][1:3])
# mock unsuccessful response to the third call
self.mock_unsuccessful_response(responses_to_calls[2][1])
get_mock = self.mock_request_futures(chain.from_iterable(responses_to_calls))
actual_responses = MultiRequest(max_retry=3).multi_get('example.com', query_params)
T.assert_equal(get_mock.call_count, 9)
T.assert_is(actual_responses[2], None)
示例8: test_migrate_cancer_interpretation_request
# 需要导入模块: from itertools import chain [as 别名]
# 或者: from itertools.chain import from_iterable [as 别名]
def test_migrate_cancer_interpretation_request(self, fill_nullables=True):
# get original IR in version 4.0.0
assembly = Assembly.GRCh38
original_ir = self.get_valid_object(
object_type=reports_4_0_0.CancerInterpretationRequest, version=self.version_4_0_0,
fill_nullables=fill_nullables, genomeAssemblyVersion=assembly, structuralTieredVariants=[],
versionControl=reports_4_0_0.ReportVersionControl(gitVersionControl='4.0.0')
)
valid_cancer_origins = ['germline_variant', 'somatic_variant']
for tiered_variant in original_ir.tieredVariants:
if tiered_variant.alleleOrigins[0] not in valid_cancer_origins:
tiered_variant.alleleOrigins[0] = random.choice(valid_cancer_origins)
# # migration requires there is exactly one tumour sample
original_ir.cancerParticipant.tumourSamples = [original_ir.cancerParticipant.tumourSamples[0]]
migrated, round_tripped = MigrationRunner().roundtrip_cancer_ir(original_ir, assembly)
self.assertFalse(self.diff_round_tripped(original_ir, round_tripped, ignore_fields=[
"TNMStageVersion", "TNMStageGrouping", "actions",
"additionalTextualVariantAnnotations", "matchedSamples", "commonAf", "additionalInfo"]))
# NOTE: not all fields in actions are kept and the order is not maintained, thus we ignore it in the
# dictionary comparison and then here manually check them
expected_report_events = chain.from_iterable(
map(lambda v: [re for re in v.reportedVariantCancer.reportEvents], original_ir.tieredVariants))
observed_report_events = chain.from_iterable(
map(lambda v: [re for re in v.reportedVariantCancer.reportEvents], round_tripped.tieredVariants))
self.assertFalse(self.diff_actions(chain(expected_report_events, observed_report_events)))
开发者ID:genomicsengland,项目名称:GelReportModels,代码行数:27,代码来源:test_migration_reports_cancer_400_to_600_to_400.py
示例9: test_migrate_cancer_interpreted_genome
# 需要导入模块: from itertools import chain [as 别名]
# 或者: from itertools.chain import from_iterable [as 别名]
def test_migrate_cancer_interpreted_genome(self, fill_nullables=True):
assembly = Assembly.GRCh38
original_ig = self.get_valid_object(
object_type=reports_4_0_0.CancerInterpretedGenome, version=self.version_4_0_0,
fill_nullables=fill_nullables, genomeAssemblyVersion=assembly,
interpretGenome=True, reportedStructuralVariants=[],
versionControl=reports_4_0_0.ReportVersionControl(gitVersionControl='4.0.0')
)
valid_cancer_origins = ['germline_variant', 'somatic_variant']
for reported_variant in original_ig.reportedVariants:
if reported_variant.alleleOrigins[0] not in valid_cancer_origins:
reported_variant.alleleOrigins[0] = random.choice(valid_cancer_origins)
# migration requires there is exactly one tumour sample
migrated, round_tripped = MigrationRunner().roundtrip_cancer_ig(original_ig, assembly)
self.assertFalse(self.diff_round_tripped(original_ig, round_tripped, ignore_fields=[
"analysisId", "actions", "additionalTextualVariantAnnotations", "commonAf"]))
# NOTE: not all fields in actions are kept and the order is not maintained, thus we ignore it in the
# dictionary comparison and then here manually check them
expected_report_events = chain.from_iterable(
map(lambda v: [re for re in v.reportedVariantCancer.reportEvents], original_ig.reportedVariants))
observed_report_events = chain.from_iterable(
map(lambda v: [re for re in v.reportedVariantCancer.reportEvents], round_tripped.reportedVariants))
self.assertFalse(self.diff_actions(chain(expected_report_events, observed_report_events)))
开发者ID:genomicsengland,项目名称:GelReportModels,代码行数:26,代码来源:test_migration_reports_cancer_400_to_600_to_400.py
示例10: _parallel_predict
# 需要导入模块: from itertools import chain [as 别名]
# 或者: from itertools.chain import from_iterable [as 别名]
def _parallel_predict(self, contexts: np.ndarray, is_predict: bool):
# Total number of contexts to predict
n_contexts = len(contexts)
# Partition contexts by job
n_jobs, n_contexts, starts = self._partition_contexts(n_contexts)
total_contexts = sum(n_contexts)
# Get seed value for each context
seeds = self.rng.randint(np.iinfo(np.int32).max, size=total_contexts)
# Perform parallel predictions
predictions = Parallel(n_jobs=n_jobs, backend=self.backend)(
delayed(self._predict_contexts)(
contexts[starts[i]:starts[i + 1]],
is_predict,
seeds[starts[i]:starts[i + 1]],
starts[i])
for i in range(n_jobs))
# Reduce
predictions = list(chain.from_iterable(t for t in predictions))
return predictions if len(predictions) > 1 else predictions[0]
示例11: build_vocab
# 需要导入模块: from itertools import chain [as 别名]
# 或者: from itertools.chain import from_iterable [as 别名]
def build_vocab(self, *args, **kwargs):
counter = Counter()
sources = []
for arg in args:
if isinstance(arg, Dataset):
sources += [getattr(arg, name) for name, field in arg.fields.items() if field is self]
else:
sources.append(arg)
for data in sources:
for x in data:
x = self.preprocess(x)
try:
counter.update(x)
except TypeError:
counter.update(chain.from_iterable(x))
specials = list(OrderedDict.fromkeys([
tok for tok in [self.unk_token, self.pad_token, self.init_token,
self.eos_token]
if tok is not None]))
self.vocab = self.vocab_cls(counter, specials=specials, **kwargs)
示例12: _get_all_related_objects
# 需要导入模块: from itertools import chain [as 别名]
# 或者: from itertools.chain import from_iterable [as 别名]
def _get_all_related_objects(self, local_only=False, include_hidden=False,
include_proxy_eq=False):
"""
Returns a list of related fields (also many to many)
:param local_only:
:param include_hidden:
:return: list
"""
include_parents = True if local_only is False else PROXY_PARENTS
fields = self.opts._get_fields(
forward=False, reverse=True,
include_parents=include_parents,
include_hidden=include_hidden
)
if include_proxy_eq:
children = chain.from_iterable(c._relation_tree
for c in self.opts.concrete_model._meta.proxied_children
if c is not self.opts)
relations = (f.remote_field for f in children
if include_hidden or not f.remote_field.field.remote_field.is_hidden())
fields = chain(fields, relations)
return list(fields)
示例13: unpack_list
# 需要导入模块: from itertools import chain [as 别名]
# 或者: from itertools.chain import from_iterable [as 别名]
def unpack_list(items):
return chain.from_iterable(item if isinstance(item, list) else [item] for item in items)
# this transforms a particular pattern into a generator for statements
示例14: train_step
# 需要导入模块: from itertools import chain [as 别名]
# 或者: from itertools.chain import from_iterable [as 别名]
def train_step(self, env_xs, env_as, env_rs, env_vs):
# NOTE(reed): Reshape to set the data shape.
self.model.reshape([('data', (len(env_xs), self.input_size))])
xs = mx.nd.array(env_xs, ctx=self.ctx)
as_ = np.array(list(chain.from_iterable(env_as)))
# Compute discounted rewards and advantages.
advs = []
gamma, lambda_ = self.config.gamma, self.config.lambda_
for i in range(len(env_vs)):
# Compute advantages using Generalized Advantage Estimation;
# see eqn. (16) of [Schulman 2016].
delta_t = (env_rs[i] + gamma*np.array(env_vs[i][1:]) -
np.array(env_vs[i][:-1]))
advs.extend(self._discount(delta_t, gamma * lambda_))
# Negative generalized advantage estimations.
neg_advs_v = -np.asarray(advs)
# NOTE(reed): Only keeping the grads for selected actions.
neg_advs_np = np.zeros((len(advs), self.act_space), dtype=np.float32)
neg_advs_np[np.arange(neg_advs_np.shape[0]), as_] = neg_advs_v
neg_advs = mx.nd.array(neg_advs_np, ctx=self.ctx)
# NOTE(reed): The grads of values is actually negative advantages.
v_grads = mx.nd.array(self.config.vf_wt * neg_advs_v[:, np.newaxis],
ctx=self.ctx)
data_batch = mx.io.DataBatch(data=[xs], label=None)
self._forward_backward(data_batch=data_batch,
out_grads=[neg_advs, v_grads])
self._update_params()
示例15: depth
# 需要导入模块: from itertools import chain [as 别名]
# 或者: from itertools.chain import from_iterable [as 别名]
def depth(self) -> int:
"""Return the farthest depth of the CodeBlock."""
i = iter(self)
level = 0
try:
for level in count():
i = chain([next(i)], i)
i = chain.from_iterable(s for s in i if isinstance(s, Sequence) and not isinstance(s, str))
except StopIteration:
return level
return 0