本文整理汇总了Python中ipywidgets.interact方法的典型用法代码示例。如果您正苦于以下问题:Python ipywidgets.interact方法的具体用法?Python ipywidgets.interact怎么用?Python ipywidgets.interact使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类ipywidgets
的用法示例。
在下文中一共展示了ipywidgets.interact方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: metal_distance_widget
# 需要导入模块: import ipywidgets [as 别名]
# 或者: from ipywidgets import interact [as 别名]
def metal_distance_widget(df_concat):
'''Plot an violinplot of metal-element distances with ipywidgets
Parameters
----------
df_concat : Dataframe
dataframe of metal-elements distances
'''
metals = df_concat['Metal'].unique().tolist()
m_widget = Dropdown(options = metals, description = "Metals")
def metal_distance_violinplot(metal):
df_metal = df_concat[df_concat["Metal"] == metal].copy()
df_metal['Element'] = df_metal['Element'].apply(lambda x: metal+"-"+x)
# Set fonts
fig, ax = plt.subplots()
fig.set_size_inches(15,6)
subplot = sns.violinplot(x="Element", y="Distance", palette="muted", data=df_metal, ax=ax)
subplot.set(xlabel="Metal Interactions", ylabel="Distance", title=f"{metal} to Elements Distances Violin Plot")
return interact(metal_distance_violinplot, metal=m_widget);
示例2: interact
# 需要导入模块: import ipywidgets [as 别名]
# 或者: from ipywidgets import interact [as 别名]
def interact(self):
return ipywidgets.interact(
self._widget_func,
weights=self.weights_W,
weight_clipping=self.weight_clipping_W,
noise_profile=self.noise_profile_W,
noise_scale=self.noise_scale_W,
noise_wave_count=self.noise_wave_count_W,
noise_base_freq=self.noise_base_freq_W,
noise_freq_factor=self.noise_freq_factor_W,
noise_phase_offset_range=self.noise_phase_offset_range_W,
colour_top=self.colour_top_W,
colour_bot=self.colour_bot_W,
)
示例3: __init__
# 需要导入模块: import ipywidgets [as 别名]
# 或者: from ipywidgets import interact [as 别名]
def __init__(self, loopFunc, **kw):
self.thread = None
self.loopFunc = loopFunc
ipywidgets.interact(self.toggler, x=ipywidgets.ToggleButton(**kw))
示例4: crop_recording_window
# 需要导入模块: import ipywidgets [as 别名]
# 或者: from ipywidgets import interact [as 别名]
def crop_recording_window(self):
self._sample.mspec.spec_stop()
self._sample.mspec.set_averages(1e4)
self._sample.mspec.set_window(0,512)
self._sample.mspec.set_segments(1)
msp = self._sample.mspec.acquire()
def pltfunc(start,end,done):
if done:
self._sample.acqu_window = [start,end]
self._sample.mspec.set_window(start,end)
self._sw.disabled = True
self._ew.disabled = True
self._dw.disabled = True
self._dw.description = "acqu_window set to [{:d}:{:d}]".format(start,end)
else:
plt.figure(figsize=(15,5))
plt.plot(msp)
plt.axvspan(0,start,color='k',alpha=.2)
plt.axvspan(end,len(msp),color='k',alpha=.2)
plt.xlim(0,len(msp))
plt.show()
self._sw = widgets.IntSlider(min=0,max=len(msp),step=1,value=self._sample.acqu_window[0],continuous_update=True)
self._ew = widgets.IntSlider(min=0,max=len(msp),step=1,value=self._sample.acqu_window[1],continuous_update=True)
self._dw = widgets.Checkbox(value=False,description="Done!",indent=True)
self._wgt = widgets.interact(pltfunc,start=self._sw,end=self._ew,done=self._dw)
self._sample.mspec.set_window(*self._sample.acqu_window)
示例5: view_structure
# 需要导入模块: import ipywidgets [as 别名]
# 或者: from ipywidgets import interact [as 别名]
def view_structure(pdbIds, bioAssembly = False, style='cartoon', color='spectrum'):
'''A wrapper function that simply displays a list of protein structures using
ipywidgets and py3Dmol
Parameters
----------
pdbIds : list
A list of PDBIDs to display
bioAssembly : bool
display bioAssembly
style : str, optional
Style of 3D structure (stick line cross sphere cartoon VDW MS)
color : str, optional
Color of 3D structure
'''
if type(pdbIds) == str:
pdbIds = [pdbIds]
def view3d(i=0):
'''Simple structure viewer that uses py3Dmol to view PDB structure by
indexing the list of PDBids
Parameters
----------
i (int): index of the protein if a list of PDBids
'''
print(f"PdbID: {pdbIds[i]}, Style: {style}")
if '.' not in pdbIds[i]:
viewer = py3Dmol.view(query='pdb:' + pdbIds[i], options={'doAssembly': bioAssembly})
viewer.setStyle({style: {'color': color}})
viewer.setStyle({'hetflag': True},{'stick':{'singleBond':False}})
else:
pdbid,chainid = pdbIds[i].split('.')
viewer = py3Dmol.view(query='pdb:' + pdbid, options={'doAssembly': bioAssembly})
viewer.setStyle({})
viewer.setStyle({'chain': chainid}, {style: {'color': color}})
viewer.setStyle({'chain': chainid, 'hetflag': True},{'stick':{'singleBond':False}})
viewer.zoomTo({'chain': chainid})
return viewer.show()
s_widget = IntSlider(min=0, max=len(pdbIds)-1, description='Structure', continuous_update=False)
return interact(view3d, i=s_widget)
示例6: view_group_interaction
# 需要导入模块: import ipywidgets [as 别名]
# 或者: from ipywidgets import interact [as 别名]
def view_group_interaction(pdbIds, interacting_group='None', style='cartoon', color='spectrum'):
'''A wrapper function that simply displays a list of protein structures using
ipywidgets and py3Dmol and highlight specified interacting groups
Parameters
----------
pdbIds : list
A list of PDBIDs to display
interacting_atom : str, optional
The interacting atom to highlight
style : str, optional
Style of 3D structure (stick line cross sphere cartoon VDW MS)
color : str, optional
Color of 3D structure
'''
if type(pdbIds) == str:
pdbIds = [pdbIds]
def view3d(i=0):
'''Simple structure viewer that uses py3Dmol to view PDB structure by
indexing the list of PDBids
Parameters
----------
i (int): index of the protein if a list of PDBids
'''
print(
f"PdbID: {pdbIds[i]}, Interactions: {interacting_group}, Style: {style}")
viewer = py3Dmol.view(query='pdb:' + pdbIds[i])
viewer.setStyle({style: {'color': color}})
if interacting_group != "None":
viewer.setStyle({'resn': interacting_group}, {
'sphere': {}})
return viewer.show()
s_widget = IntSlider(min=0, max=len(pdbIds)-1, description='Structure', continuous_update=False)
return interact(view3d, i=s_widget)
示例7: component_viewer
# 需要导入模块: import ipywidgets [as 别名]
# 或者: from ipywidgets import interact [as 别名]
def component_viewer(output, tr=2.0):
''' This a function to interactively view the results of a decomposition analysis
Args:
output: (dict) output dictionary from running Brain_data.decompose()
tr: (float) repetition time of data
'''
if ipywidgets is None:
raise ImportError(
"ipywidgets is required for interactive plotting. Please install this package manually or install nltools with optional arguments: pip install 'nltools[interactive_plots]'"
)
def component_inspector(component, threshold):
'''This a function to be used with ipywidgets to interactively view a decomposition analysis
Make sure you have tr and output assigned to variables.
Example:
from ipywidgets import BoundedFloatText, BoundedIntText
from ipywidgets import interact
tr = 2.4
output = data_filtered_smoothed.decompose(algorithm='ica', n_components=30, axis='images', whiten=True)
interact(component_inspector, component=BoundedIntText(description='Component', value=0, min=0, max=len(output['components'])-1),
threshold=BoundedFloatText(description='Threshold', value=2.0, min=0, max=4, step=.1))
'''
_, ax = plt.subplots(nrows=3, figsize=(12,8))
thresholded = (output['components'][component] - output['components'][component].mean())*(1/output['components'][component].std())
thresholded.data[np.abs(thresholded.data) <= threshold] = 0
plot_stat_map(thresholded.to_nifti(), cut_coords=range(-40, 70, 10),
display_mode='z', black_bg=True, colorbar=True, annotate=False,
draw_cross=False, axes=ax[0])
if isinstance(output['decomposition_object'], (sklearn.decomposition.PCA)):
var_exp = output['decomposition_object'].explained_variance_ratio_[component]
ax[0].set_title(f"Component: {component}/{len(output['components'])}, Variance Explained: {var_exp:2.2}", fontsize=18)
else:
ax[0].set_title(f"Component: {component}/{len(output['components'])}", fontsize=18)
ax[1].plot(output['weights'][:, component], linewidth=2, color='red')
ax[1].set_ylabel('Intensity (AU)', fontsize=18)
ax[1].set_title(f'Timecourse (TR={tr})', fontsize=16)
y = fft(output['weights'][:, component])
f = fftfreq(len(y), d=tr)
ax[2].plot(f[f > 0], np.abs(y)[f > 0]**2)
ax[2].set_ylabel('Power', fontsize=18)
ax[2].set_xlabel('Frequency (Hz)', fontsize=16)
ipywidgets.interact(component_inspector, component=ipywidgets.BoundedIntText(description='Component', value=0, min=0, max=len(output['components'])-1),
threshold=ipywidgets.BoundedFloatText(description='Threshold', value=2.0, min=0, max=4, step=.1))