当前位置: 首页>>代码示例>>Python>>正文


Python ipdb.set_trace方法代码示例

本文整理汇总了Python中ipdb.set_trace方法的典型用法代码示例。如果您正苦于以下问题:Python ipdb.set_trace方法的具体用法?Python ipdb.set_trace怎么用?Python ipdb.set_trace使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在ipdb的用法示例。


在下文中一共展示了ipdb.set_trace方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: lidar_to_img

# 需要导入模块: import ipdb [as 别名]
# 或者: from ipdb import set_trace [as 别名]
def lidar_to_img(points, img_size):
    # pdb.set_trace()
    lidar_data = np.array(points[:, :2])
    lidar_data *= 9.9999
    lidar_data -= (0.5 * img_size, 0.5 * img_size)
    lidar_data = np.fabs(lidar_data)
    lidar_data = lidar_data.astype(np.int32)
    lidar_data = np.reshape(lidar_data, (-1, 2))
    lidar_img = np.zeros((img_size, img_size))
    lidar_img[tuple(lidar_data.T)] = 255
    return torch.tensor(lidar_img).cuda()


# def lidar_to_img(points, img_size):
#     # pdb.set_trace()
#     lidar_data = points[:, :2]
#     lidar_data *= 9.9999
#     lidar_data -= torch.tensor((0.5 * img_size, 0.5 * img_size)).cuda()
#     lidar_data = torch.abs(lidar_data)
#     lidar_data = torch.floor(lidar_data).long()
#     lidar_data = lidar_data.view(-1, 2)
#     lidar_img = torch.zeros((img_size, img_size)).cuda()
#     lidar_img[lidar_data.permute(1,0)] = 255
#     return lidar_img 
开发者ID:anshulpaigwar,项目名称:Attentional-PointNet,代码行数:26,代码来源:kitti_evaluation.py

示例2: lidar_to_heightmap

# 需要导入模块: import ipdb [as 别名]
# 或者: from ipdb import set_trace [as 别名]
def lidar_to_heightmap(points, img_size):
    # pdb.set_trace()
    lidar_data = np.array(points[:, :2])
    height_data = np.array(points[:,2])
    height_data *= 255/2
    height_data[height_data < 0] = 0
    height_data[height_data > 255] = 255
    height_data = np.fabs(height_data)
    height_data = height_data.astype(np.int32)


    lidar_data *= 9.9999
    lidar_data -= (0.5 * img_size, 0.5 * img_size)
    lidar_data = np.fabs(lidar_data)
    lidar_data = lidar_data.astype(np.int32)
    lidar_data = np.reshape(lidar_data, (-1, 2))
    lidar_img = np.zeros((img_size, img_size))
    lidar_img[tuple(lidar_data.T)] = height_data # TODO: sort the point wrt height first lex sort
    return lidar_img 
开发者ID:anshulpaigwar,项目名称:Attentional-PointNet,代码行数:21,代码来源:kitti_LidarImg_data_generator.py

示例3: forward

# 需要导入模块: import ipdb [as 别名]
# 或者: from ipdb import set_trace [as 别名]
def forward(self, input):
        """
        input: (wrap(srcBatch), wrap(srcBioBatch), lengths), (wrap(tgtBatch), wrap(copySwitchBatch), wrap(copyTgtBatch))
        """
        # ipdb.set_trace()
        src = input[0]
        tgt = input[1][0][:-1]  # exclude last target from inputs
        src_pad_mask = Variable(src[0].data.eq(s2s.Constants.PAD).transpose(0, 1).float(), requires_grad=False,
                                volatile=False)
        enc_hidden, context = self.encoder(src)

        init_att = self.make_init_att(context)
        enc_hidden = self.decIniter(enc_hidden[1]).unsqueeze(0)  # [1] is the last backward hiden

        g_out, dec_hidden, _attn, _attention_vector = self.decoder(tgt, enc_hidden, context, src_pad_mask, init_att)

        return g_out 
开发者ID:magic282,项目名称:SEASS,代码行数:19,代码来源:Models.py

示例4: forward

# 需要导入模块: import ipdb [as 别名]
# 或者: from ipdb import set_trace [as 别名]
def forward(self, input):
        """
        (wrap(srcBatch), lengths), \
               (wrap(bioBatch), lengths), ((wrap(x) for x in featBatches), lengths), \
               (wrap(tgtBatch), wrap(copySwitchBatch), wrap(copyTgtBatch)), \
               indices
        """
        # ipdb.set_trace()
        src = input[0]
        tgt = input[3][0][:-1]  # exclude last target from inputs
        src_pad_mask = Variable(src[0].data.eq(s2s.Constants.PAD).transpose(0, 1).float(), requires_grad=False,
                                volatile=False)
        bio = input[1]
        feats = input[2]
        enc_hidden, context = self.encoder(src, bio, feats)

        init_att = self.make_init_att(context)
        enc_hidden = self.decIniter(enc_hidden[1]).unsqueeze(0)  # [1] is the last backward hiden

        g_out, c_out, c_gate_out, dec_hidden, _attn, _attention_vector = self.decoder(tgt, enc_hidden, context,
                                                                                      src_pad_mask, init_att)

        return g_out, c_out, c_gate_out 
开发者ID:magic282,项目名称:NQG,代码行数:25,代码来源:Models.py

示例5: sample_kernel

# 需要导入模块: import ipdb [as 别名]
# 或者: from ipdb import set_trace [as 别名]
def sample_kernel():
    ker_n = 16
    ker_h = 3
    ker_w = 3
    ker_d = 8
    ker_shape = [ker_n, ker_h, ker_w, ker_d]

    filter_h = 3
    filter_w = 3

    test_seq = np.array(np.arange(ker_d * ker_h * ker_w), ndmin=2)
    ones = np.array(np.ones(ker_n), ndmin=2).T
    test_mat = ones * test_seq

    #  out = im2col(x, [ker_h, ker_w])
    x = test_mat.astype(np.uint32)
    qm = QuantizedMatrix(x, 2)

    import ipdb
    ipdb.set_trace()

    return out 
开发者ID:blue-oil,项目名称:blueoil,代码行数:24,代码来源:debug.py

示例6: worker

# 需要导入模块: import ipdb [as 别名]
# 或者: from ipdb import set_trace [as 别名]
def worker():
    global SHARE_Q
    while True :
        if not SHARE_Q.empty():
            item = SHARE_Q.get()
            # ipdb.set_trace()
            do_something(item)
            time.sleep(1)
            SHARE_Q.task_done()
        else:
            break
            
#parser = argparse.ArgumentParser(description='copy selected images from source dir. to target dir.')
#parser.add_argument('--rm_dset', default=False, action='store_true',
#                    help='true to remove existing selected data before reproducing it')
#parser.add_argument('--auxiliary-dataset', type=str, default='imagenet',
#                    help='choose auxiliary dataset between imagenet/l_bird')
#args = parser.parse_args() 
开发者ID:YBZh,项目名称:MetaFGNet,代码行数:20,代码来源:selectImage_multiprocess.py

示例7: __init__

# 需要导入模块: import ipdb [as 别名]
# 或者: from ipdb import set_trace [as 别名]
def __init__(self, generator, tgt_vocab, label_smoothing=0.0):
        super(NMTLossCompute, self).__init__(generator, tgt_vocab)
        assert (label_smoothing >= 0.0 and label_smoothing <= 1.0)

        self.tgt_vocab_len = len(tgt_vocab)

        if label_smoothing > 0:
            # When label smoothing is turned on,
            # KL-divergence between q_{smoothed ground truth prob.}(w)
            # and p_{prob. computed by model}(w) is minimized.
            # If label smoothing value is set to zero, the loss
            # is equivalent to NLLLoss or CrossEntropyLoss.
            # All non-true labels are uniformly set to low-confidence.
            self.criterion = nn.KLDivLoss(size_average=False)
            one_hot = torch.randn(1, len(tgt_vocab))
            one_hot.fill_(label_smoothing / (len(tgt_vocab) - 2))
            one_hot[0][self.padding_idx] = 0
            self.register_buffer('one_hot', one_hot)
        else:
            weight = torch.ones(len(tgt_vocab))
            weight[self.padding_idx] = 0
            self.criterion = nn.NLLLoss(weight, size_average=False)  # IMPORTANT: NLLLoss is what we use. Interesting that size_average=False
            # ipdb.set_trace()
        self.confidence = 1.0 - label_smoothing 
开发者ID:matthewmackay,项目名称:reversible-rnn,代码行数:26,代码来源:Loss.py

示例8: loss

# 需要导入模块: import ipdb [as 别名]
# 或者: from ipdb import set_trace [as 别名]
def loss(self, inf_targets, inf_vads, targets, vads, mtl_fac):
        '''
        Loss definition
        Only speech inference loss is defined and work quite well
        Add VAD cross entropy loss if you want
        '''
        loss_v1 = tf.nn.l2_loss(inf_targets - targets) / self.batch_size
        loss_o = loss_v1
        reg_loss = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
        # ipdb.set_trace()
        loss_v = loss_o + tf.add_n(reg_loss)
        tf.scalar_summary('loss', loss_v)
        # loss_merge = tf.cond(
        #     is_val, lambda: tf.scalar_summary('val_loss_batch', loss_v),
        #     lambda: tf.scalar_summary('loss', loss_v))
        return loss_v, loss_o
        # return tf.reduce_mean(tf.nn.l2_loss(inf_targets - targets)) 
开发者ID:zhr1201,项目名称:Multi-channel-speech-extraction-using-DNN,代码行数:19,代码来源:SENN.py

示例9: transform

# 需要导入模块: import ipdb [as 别名]
# 或者: from ipdb import set_trace [as 别名]
def transform(audio_data, save_image_path, nFFT=256, overlap=0.75):
    '''audio_data: signals to convert
    save_image_path: path to store the image file'''
    # spectrogram
    freq_data = stft(audio_data, nFFT, overlap)
    freq_data = np.maximum(np.abs(freq_data),
                           np.max(np.abs(freq_data)) / 10000)
    log_freq_data = 20. * np.log10(freq_data / 1e-4)
    N_samples = log_freq_data.shape[0]
    # log_freq_data = np.maximum(log_freq_data, max_m - 70)
    # print(np.max(np.max(log_freq_data)))
    # print(np.min(np.min(log_freq_data)))
    log_freq_data = np.round(log_freq_data)
    log_freq_data = np.transpose(log_freq_data)
    # ipdb.set_trace()

    assert np.max(np.max(log_freq_data)) < 256, 'spectrogram value too large'
    # save the image
    spec_imag = Image.fromarray(log_freq_data)
    spec_imag = spec_imag.convert('RGB')
    spec_imag.save(save_image_path)
    return N_samples 
开发者ID:zhr1201,项目名称:Multi-channel-speech-extraction-using-DNN,代码行数:24,代码来源:data_set_gen.py

示例10: initialize

# 需要导入模块: import ipdb [as 别名]
# 或者: from ipdb import set_trace [as 别名]
def initialize(self, opt):
        self.opt = opt
        self.opt.imageSize = self.opt.imageSize if len(self.opt.imageSize) == 2 else self.opt.imageSize * 2
        self.gpu_ids = ''
        self.batchSize = self.opt.batchSize
        self.checkpoints_path = os.path.join(self.opt.checkpoints, self.opt.name)
        self.create_save_folders()

        self.netG = self.load_network()
        # st()
        if 'vaihingen' not in self.opt.dataset_name:
            self.data_loader, _ = CreateDataLoader(opt)

        # visualizer
        self.visualizer = Visualizer(self.opt)
        if 'semantics' in self.opt.tasks:
            from util.util import get_color_palette
            self.opt.color_palette = np.array(get_color_palette(self.opt.dataset_name))
            self.opt.color_palette = list(self.opt.color_palette.reshape(-1)) 
开发者ID:marcelampc,项目名称:aerial_mtl,代码行数:21,代码来源:mtl_test.py

示例11: tensor2im

# 需要导入模块: import ipdb [as 别名]
# 或者: from ipdb import set_trace [as 别名]
def tensor2im(self, img, imtype=np.uint8, convert_value=255.0):
        # ToDo: improve this horrible function
        if img.shape[0] > 3:   # case of focalstack
            img = img[:, :3]
        
        if(type(img) != np.ndarray):
            image_numpy = img.cpu().float().numpy()
        else:
            image_numpy = img
        if img.shape[0] == 3:
            image_numpy = (image_numpy + 1) / 2.0 * convert_value
            # image_numpy = (image_numpy + mean/std) * std * 255.0
            image_numpy = image_numpy.astype(imtype)    # .transpose([2,0,1])
        else:
            # st()
            # image_numpy = image_numpy.astype(imtype)
            image_numpy = (image_numpy - image_numpy.min()) * (255 / self.opt.max_distance)
            # image_numpy = image_numpy - image_numpy.min()
            # image_numpy = (image_numpy / image_numpy.max()) * 255
            # image_numpy = (image_numpy / image_numpy.max()) * 255
            image_numpy = np.repeat(image_numpy, 3, axis=0)
        return image_numpy

    # visuals: dictionary of images to display or save 
开发者ID:marcelampc,项目名称:aerial_mtl,代码行数:26,代码来源:visualizer.py

示例12: visualize_tfrecords_test

# 需要导入模块: import ipdb [as 别名]
# 或者: from ipdb import set_trace [as 别名]
def visualize_tfrecords_test(fpaths):
    for fname in fpaths:
        print(fname)
        for serialized_ex in tf.python_io.tf_record_iterator(fname):
            results = read_from_example(serialized_ex)
            images = results['images']
            kps = results['kps']
            for i, (image, kp) in enumerate(zip(images, kps)):
                kp = kp.T
                import matplotlib.pyplot as plt
                plt.ion()
                plt.clf()
                plt.figure(1)
                skel_img = draw_skeleton(image, kp[:2, :], vis=kp[2, :])
                plt.imshow(skel_img)
                plt.title('%d' % i)
                plt.axis('off')
                plt.pause(1e-5)
                if i == 0:
                    ipdb.set_trace()
                if i > config.max_sequence_length:
                    break

            ipdb.set_trace() 
开发者ID:akanazawa,项目名称:human_dynamics,代码行数:26,代码来源:visualize_tfrecords.py

示例13: forward

# 需要导入模块: import ipdb [as 别名]
# 或者: from ipdb import set_trace [as 别名]
def forward(self, inpt, lengths, hidden=None):
        # use pack_padded
        # inpt: [seq_len, batch], lengths: [batch_size]
        embedded = self.embed(inpt)    # [seq_len, batch, input_size]

        if not hidden:
            hidden = torch.randn(self.n_layer * 2, len(lengths), 
                                 self.hidden_size)
            if torch.cuda.is_available():
                hidden = hidden.cuda()

        embedded = nn.utils.rnn.pack_padded_sequence(embedded, lengths, enforce_sorted=False)
        _, hidden = self.gru(embedded, hidden)   
        hidden = hidden.sum(axis=0)
        # [n_layer * bidirection, batch, hidden_size]
        # hidden = hidden.reshape(hidden.shape[1], -1)
        # ipdb.set_trace()
        # hidden = hidden.permute(1, 0, 2)    # [batch, n_layer * bidirectional, hidden_size]
        # hidden = hidden.reshape(hidden.size(0), -1) # [batch, *]
        # hidden = self.bn(hidden)
        hidden = torch.tanh(hidden)   # [batch, hidden]
        return hidden 
开发者ID:gmftbyGMFTBY,项目名称:MultiTurnDialogZoo,代码行数:24,代码来源:DSHRED.py

示例14: forward

# 需要导入模块: import ipdb [as 别名]
# 或者: from ipdb import set_trace [as 别名]
def forward(self, inpt, lengths, hidden=None):
        # use pack_padded
        # inpt: [seq_len, batch], lengths: [batch_size]
        # embedded = self.embed(inpt)    # [seq_len, batch, input_size]

        if not hidden:
            hidden = torch.randn(self.n_layer * 2, len(lengths), 
                                 self.hidden_size)
            if torch.cuda.is_available():
                hidden = hidden.cuda()

        embedded = nn.utils.rnn.pack_padded_sequence(inpt, lengths,
                                                     enforce_sorted=False)
        _, hidden = self.gru(embedded, hidden)    
        # [n_layer * bidirection, batch, hidden_size]
        # hidden = hidden.reshape(hidden.shape[1], -1)
        # ipdb.set_trace()
        hidden = hidden.sum(axis=0)    # [4, batch, hidden] -> [batch, hidden]
        
        # hidden = hidden.permute(1, 0, 2)    # [batch, n_layer * bidirectional, hidden_size]
        # hidden = hidden.reshape(hidden.size(0), -1) # [batch, *]
        # hidden = self.bn(hidden)
        # hidden = self.hidden_proj(hidden)
        hidden = torch.tanh(hidden)   # [batch, hidden]
        return hidden 
开发者ID:gmftbyGMFTBY,项目名称:MultiTurnDialogZoo,代码行数:27,代码来源:VHRED.py

示例15: __init__

# 需要导入模块: import ipdb [as 别名]
# 或者: from ipdb import set_trace [as 别名]
def __init__(self, config, sess=None):
        self.config = config
        self.load_path = config.load_path
        if not config.load_path:
            raise Exception(
                "provide a pretrained model path"
            )
        if not exists(config.load_path + '.index'):
            print('%s couldnt find..' % config.load_path)
            import ipdb
            ipdb.set_trace()

        # Data
        self.batch_size = config.batch_size
        self.img_size = config.img_size
        self.data_format = config.data_format
        input_size = (self.batch_size, self.img_size, self.img_size, 3)
        self.images_pl = tf.placeholder(tf.float32, shape=input_size, name='input_images')

        if sess is None:
            self.sess = tf.Session()
        else:
            self.sess = sess

        # Load graph.
        self.saver = tf.train.import_meta_graph(self.load_path+'.meta')
        self.graph = tf.get_default_graph()
        self.prepare() 
开发者ID:soubhiksanyal,项目名称:RingNet,代码行数:30,代码来源:run_RingNet.py


注:本文中的ipdb.set_trace方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。