本文整理汇总了Python中inputs.inputs方法的典型用法代码示例。如果您正苦于以下问题:Python inputs.inputs方法的具体用法?Python inputs.inputs怎么用?Python inputs.inputs使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类inputs
的用法示例。
在下文中一共展示了inputs.inputs方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: language_model_graph
# 需要导入模块: import inputs [as 别名]
# 或者: from inputs import inputs [as 别名]
def language_model_graph(self, compute_loss=True):
"""Constructs LM graph from inputs to LM loss.
* Caches the VatxtInput object in `self.lm_inputs`
* Caches tensors: `lm_embedded`
Args:
compute_loss: bool, whether to compute and return the loss or stop after
the LSTM computation.
Returns:
loss: scalar float.
"""
inputs = _inputs('train', pretrain=True)
self.lm_inputs = inputs
return self._lm_loss(inputs, compute_loss=compute_loss)
示例2: _lm_loss
# 需要导入模块: import inputs [as 别名]
# 或者: from inputs import inputs [as 别名]
def _lm_loss(self,
inputs,
emb_key='lm_embedded',
lstm_layer='lstm',
lm_loss_layer='lm_loss',
loss_name='lm_loss',
compute_loss=True):
embedded = self.layers['embedding'](inputs.tokens)
self.tensors[emb_key] = embedded
lstm_out, next_state = self.layers[lstm_layer](embedded, inputs.state,
inputs.length)
if compute_loss:
loss = self.layers[lm_loss_layer](
[lstm_out, inputs.labels, inputs.weights])
with tf.control_dependencies([inputs.save_state(next_state)]):
loss = tf.identity(loss)
tf.summary.scalar(loss_name, loss)
return loss
示例3: _activation_summary
# 需要导入模块: import inputs [as 别名]
# 或者: from inputs import inputs [as 别名]
def _activation_summary(self, x):
"""Helper to create summaries for activations.
Creates a summary that provides a histogram of activations.
Creates a summary that measure the sparsity of activations.
Args:
x: Tensor
Returns:
nothing
"""
# Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
# session. This helps the clarity of presentation on tensorboard.
# Error: these summaries cause high classifier error!!!
# All inputs to node MergeSummary/MergeSummary must be from the same frame.
# tensor_name = re.sub('%s_[0-9]*/' % "tower", '', x.op.name)
# tf.histogram_summary(tensor_name + '/activations', x)
# tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
示例4: loss
# 需要导入模块: import inputs [as 别名]
# 或者: from inputs import inputs [as 别名]
def loss(logits, labels):
"""Add L2Loss to all the trainable variables.
Add summary for "Loss" and "Loss/avg".
Args:
logits: Logits from inference().
labels: Labels from distorted_inputs or inputs(). 1-D tensor
of shape [batch_size]
Returns:
Loss tensor of type float.
"""
# Calculate the average cross entropy loss across the batch.
labels = tf.cast(labels, tf.int64)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits,
labels,
name='cross_entropy_per_example')
cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
tf.add_to_collection('losses', cross_entropy_mean)
# The total loss is defined as the cross entropy loss plus all of the weight
# decay terms (L2 loss).
return tf.add_n(tf.get_collection('losses'), name='total_loss')
示例5: classifier_graph
# 需要导入模块: import inputs [as 别名]
# 或者: from inputs import inputs [as 别名]
def classifier_graph(self):
"""Constructs classifier graph from inputs to classifier loss.
* Caches the VatxtInput object in `self.cl_inputs`
* Caches tensors: `cl_embedded`, `cl_logits`, `cl_loss`
Returns:
loss: scalar float.
"""
inputs = _inputs('train', pretrain=False)
self.cl_inputs = inputs
embedded = self.layers['embedding'](inputs.tokens)
self.tensors['cl_embedded'] = embedded
_, next_state, logits, loss = self.cl_loss_from_embedding(
embedded, return_intermediates=True)
tf.summary.scalar('classification_loss', loss)
self.tensors['cl_logits'] = logits
self.tensors['cl_loss'] = loss
acc = layers_lib.accuracy(logits, inputs.labels, inputs.weights)
tf.summary.scalar('accuracy', acc)
adv_loss = (self.adversarial_loss() * tf.constant(
FLAGS.adv_reg_coeff, name='adv_reg_coeff'))
tf.summary.scalar('adversarial_loss', adv_loss)
total_loss = loss + adv_loss
tf.summary.scalar('total_classification_loss', total_loss)
with tf.control_dependencies([inputs.save_state(next_state)]):
total_loss = tf.identity(total_loss)
return total_loss
示例6: eval_graph
# 需要导入模块: import inputs [as 别名]
# 或者: from inputs import inputs [as 别名]
def eval_graph(self, dataset='test'):
"""Constructs classifier evaluation graph.
Args:
dataset: the labeled dataset to evaluate, {'train', 'test', 'valid'}.
Returns:
eval_ops: dict<metric name, tuple(value, update_op)>
var_restore_dict: dict mapping variable restoration names to variables.
Trainable variables will be mapped to their moving average names.
"""
inputs = _inputs(dataset, pretrain=False)
embedded = self.layers['embedding'](inputs.tokens)
_, next_state, logits, _ = self.cl_loss_from_embedding(
embedded, inputs=inputs, return_intermediates=True)
eval_ops = {
'accuracy':
tf.contrib.metrics.streaming_accuracy(
layers_lib.predictions(logits), inputs.labels, inputs.weights)
}
with tf.control_dependencies([inputs.save_state(next_state)]):
acc, acc_update = eval_ops['accuracy']
acc_update = tf.identity(acc_update)
eval_ops['accuracy'] = (acc, acc_update)
var_restore_dict = make_restore_average_vars_dict()
return eval_ops, var_restore_dict
示例7: cl_loss_from_embedding
# 需要导入模块: import inputs [as 别名]
# 或者: from inputs import inputs [as 别名]
def cl_loss_from_embedding(self,
embedded,
inputs=None,
return_intermediates=False):
"""Compute classification loss from embedding.
Args:
embedded: 3-D float Tensor [batch_size, num_timesteps, embedding_dim]
inputs: VatxtInput, defaults to self.cl_inputs.
return_intermediates: bool, whether to return intermediate tensors or only
the final loss.
Returns:
If return_intermediates is True:
lstm_out, next_state, logits, loss
Else:
loss
"""
if inputs is None:
inputs = self.cl_inputs
lstm_out, next_state = self.layers['lstm'](embedded, inputs.state,
inputs.length)
logits = self.layers['cl_logits'](lstm_out)
loss = layers_lib.classification_loss(logits, inputs.labels, inputs.weights)
if return_intermediates:
return lstm_out, next_state, logits, loss
else:
return loss
示例8: _inputs
# 需要导入模块: import inputs [as 别名]
# 或者: from inputs import inputs [as 别名]
def _inputs(dataset='train', pretrain=False, bidir=False):
return inputs_lib.inputs(
data_dir=FLAGS.data_dir,
phase=dataset,
bidir=bidir,
pretrain=pretrain,
use_seq2seq=pretrain and FLAGS.use_seq2seq_autoencoder,
state_size=FLAGS.rnn_cell_size,
num_layers=FLAGS.rnn_num_layers,
batch_size=FLAGS.batch_size,
unroll_steps=FLAGS.num_timesteps,
eos_id=FLAGS.vocab_size - 1)