本文整理汇总了Python中inception_resnet_v2.inception_resnet_v2_arg_scope方法的典型用法代码示例。如果您正苦于以下问题:Python inception_resnet_v2.inception_resnet_v2_arg_scope方法的具体用法?Python inception_resnet_v2.inception_resnet_v2_arg_scope怎么用?Python inception_resnet_v2.inception_resnet_v2_arg_scope使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类inception_resnet_v2
的用法示例。
在下文中一共展示了inception_resnet_v2.inception_resnet_v2_arg_scope方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: create_model
# 需要导入模块: import inception_resnet_v2 [as 别名]
# 或者: from inception_resnet_v2 import inception_resnet_v2_arg_scope [as 别名]
def create_model(x, reuse=None):
"""Create model graph.
Args:
x: input images
reuse: reuse parameter which will be passed to underlying variable scopes.
Should be None first call and True every subsequent call.
Returns:
(logits, end_points) - tuple of model logits and enpoints
Raises:
ValueError: if model type specified by --model_name flag is invalid.
"""
if FLAGS.model_name == 'inception_v3':
with slim.arg_scope(inception.inception_v3_arg_scope()):
return inception.inception_v3(
x, num_classes=NUM_CLASSES, is_training=False, reuse=reuse)
elif FLAGS.model_name == 'inception_resnet_v2':
with slim.arg_scope(inception_resnet_v2.inception_resnet_v2_arg_scope()):
return inception_resnet_v2.inception_resnet_v2(
x, num_classes=NUM_CLASSES, is_training=False, reuse=reuse)
else:
raise ValueError('Invalid model name: %s' % (FLAGS.model_name))
示例2: main
# 需要导入模块: import inception_resnet_v2 [as 别名]
# 或者: from inception_resnet_v2 import inception_resnet_v2_arg_scope [as 别名]
def main(_):
batch_shape = [FLAGS.batch_size, FLAGS.image_height, FLAGS.image_width, 3]
num_classes = 1001
tf.logging.set_verbosity(tf.logging.INFO)
with tf.Graph().as_default():
# Prepare graph
x_input = tf.placeholder(tf.float32, shape=batch_shape)
with slim.arg_scope(inception_resnet_v2.inception_resnet_v2_arg_scope()):
_, end_points = inception_resnet_v2.inception_resnet_v2(
x_input, num_classes=num_classes, is_training=False)
predicted_labels = tf.argmax(end_points['Predictions'], 1)
# Run computation
saver = tf.train.Saver(slim.get_model_variables())
session_creator = tf.train.ChiefSessionCreator(
scaffold=tf.train.Scaffold(saver=saver),
checkpoint_filename_with_path=FLAGS.checkpoint_path,
master=FLAGS.master)
with tf.train.MonitoredSession(session_creator=session_creator) as sess:
with tf.gfile.Open(FLAGS.output_file, 'w') as out_file:
for filenames, images in load_images(FLAGS.input_dir, batch_shape):
labels = sess.run(predicted_labels, feed_dict={x_input: images})
for filename, label in zip(filenames, labels):
out_file.write('{0},{1}\n'.format(filename, label))
示例3: get_network
# 需要导入模块: import inception_resnet_v2 [as 别名]
# 或者: from inception_resnet_v2 import inception_resnet_v2_arg_scope [as 别名]
def get_network(self, input_tensor, is_training):
# Load pre-trained inception-resnet model
with slim.arg_scope(inception_resnet_v2_arg_scope(batch_norm_decay = 0.999, weight_decay = 0.0001)):
net, end_points = inception_resnet_v2(input_tensor, is_training = is_training)
# Adding some modification to original InceptionResnetV2 - changing scoring of AUXILIARY TOWER
weight_decay = 0.0005
with tf.variable_scope('NewInceptionResnetV2'):
with tf.variable_scope('AuxiliaryScoring'):
with slim.arg_scope([layers.convolution2d, layers.convolution2d_transpose],
weights_regularizer = slim.l2_regularizer(weight_decay),
biases_regularizer = slim.l2_regularizer(weight_decay),
activation_fn = None):
tf.summary.histogram('Last_layer/activations', net, [KEY_SUMMARIES])
# Scoring
net = slim.dropout(net, 0.7, is_training = is_training, scope = 'Dropout')
net = layers.convolution2d(net, num_outputs = self.FEATURES, kernel_size = 1, stride = 1,
scope = 'Scoring_layer')
feature = net
tf.summary.histogram('Scoring_layer/activations', net, [KEY_SUMMARIES])
# Upsampling
net = layers.convolution2d_transpose(net, num_outputs = 16, kernel_size = 17, stride = 17,
padding = 'VALID', scope = 'Upsampling_layer')
tf.summary.histogram('Upsampling_layer/activations', net, [KEY_SUMMARIES])
# Smoothing layer - separable gaussian filters
net = super()._get_gauss_smoothing_net(net, size = self.SMOOTH_SIZE, std = 1.0, kernel_sum = 0.2)
return net, feature
示例4: main
# 需要导入模块: import inception_resnet_v2 [as 别名]
# 或者: from inception_resnet_v2 import inception_resnet_v2_arg_scope [as 别名]
def main(_):
"""Classify all images using the sample defense."""
batch_shape = [FLAGS.batch_size, FLAGS.image_height, FLAGS.image_width, 3]
nb_classes = 1001
tf.logging.set_verbosity(tf.logging.INFO)
with tf.Graph().as_default():
# Prepare graph
x_input = tf.placeholder(tf.float32, shape=batch_shape)
with slim.arg_scope(inception_resnet_v2.inception_resnet_v2_arg_scope()):
_, end_points = inception_resnet_v2.inception_resnet_v2(
x_input, num_classes=nb_classes, is_training=False)
predicted_labels = tf.argmax(end_points['Predictions'], 1)
# Run computation
saver = tf.train.Saver(slim.get_model_variables())
session_creator = tf.train.ChiefSessionCreator(
scaffold=tf.train.Scaffold(saver=saver),
checkpoint_filename_with_path=FLAGS.checkpoint_path,
master=FLAGS.master)
with tf.train.MonitoredSession(session_creator=session_creator) as sess:
with tf.gfile.Open(FLAGS.output_file, 'w') as out_file:
for filenames, images in load_images(FLAGS.input_dir, batch_shape):
labels = sess.run(predicted_labels, feed_dict={x_input: images})
for filename, label in zip(filenames, labels):
out_file.write('{0},{1}\n'.format(filename, label))
示例5: main
# 需要导入模块: import inception_resnet_v2 [as 别名]
# 或者: from inception_resnet_v2 import inception_resnet_v2_arg_scope [as 别名]
def main(_):
batch_shape = [FLAGS.batch_size, FLAGS.image_height, FLAGS.image_width, 3]
num_classes = 1001
itr = 30
tf.logging.set_verbosity(tf.logging.INFO)
with tf.Graph().as_default():
# Prepare graph
x_input = tf.placeholder(tf.float32, shape=batch_shape)
img_resize_tensor = tf.placeholder(tf.int32, [2])
x_input_resize = tf.image.resize_images(x_input, img_resize_tensor, method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
shape_tensor = tf.placeholder(tf.int32, [3])
padded_input = padding_layer_iyswim(x_input_resize, shape_tensor)
# 330 is the last value to keep 8*8 output, 362 is the last value to keep 9*9 output, stride = 32
padded_input.set_shape(
(FLAGS.batch_size, FLAGS.image_resize, FLAGS.image_resize, 3))
with slim.arg_scope(inception_resnet_v2.inception_resnet_v2_arg_scope()):
_, end_points = inception_resnet_v2.inception_resnet_v2(
padded_input, num_classes=num_classes, is_training=False, create_aux_logits=True)
predicted_labels = tf.argmax(end_points['Predictions'], 1)
# Run computation
saver = tf.train.Saver(slim.get_model_variables())
session_creator = tf.train.ChiefSessionCreator(
scaffold=tf.train.Scaffold(saver=saver),
checkpoint_filename_with_path=FLAGS.checkpoint_path,
master=FLAGS.master)
with tf.train.MonitoredSession(session_creator=session_creator) as sess:
with tf.gfile.Open(FLAGS.output_file, 'w') as out_file:
for filenames, images in load_images(FLAGS.input_dir, batch_shape):
final_preds = np.zeros(
[FLAGS.batch_size, num_classes, itr])
for j in range(itr):
if np.random.randint(0, 2, size=1) == 1:
images = images[:, :, ::-1, :]
resize_shape_ = np.random.randint(310, 331)
pred, aux_pred = sess.run([end_points['Predictions'], end_points['AuxPredictions']],
feed_dict={x_input: images, img_resize_tensor: [resize_shape_]*2,
shape_tensor: np.array([random.randint(0, FLAGS.image_resize - resize_shape_), random.randint(0, FLAGS.image_resize - resize_shape_), FLAGS.image_resize])})
final_preds[..., j] = pred + 0.4 * aux_pred
final_probs = np.sum(final_preds, axis=-1)
labels = np.argmax(final_probs, 1)
for filename, label in zip(filenames, labels):
out_file.write('{0},{1}\n'.format(filename, label))