本文整理汇总了Python中inception.slim.losses.l1_regularizer方法的典型用法代码示例。如果您正苦于以下问题:Python losses.l1_regularizer方法的具体用法?Python losses.l1_regularizer怎么用?Python losses.l1_regularizer使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类inception.slim.losses
的用法示例。
在下文中一共展示了losses.l1_regularizer方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: testL1Regularizer
# 需要导入模块: from inception.slim import losses [as 别名]
# 或者: from inception.slim.losses import l1_regularizer [as 别名]
def testL1Regularizer(self):
with self.test_session():
shape = [5, 5, 5]
num_elem = 5 * 5 * 5
tensor = tf.constant(1.0, shape=shape)
loss = losses.l1_regularizer()(tensor)
self.assertEquals(loss.op.name, 'L1Regularizer/value')
self.assertAlmostEqual(loss.eval(), num_elem, 5)
示例2: testL1RegularizerWithScope
# 需要导入模块: from inception.slim import losses [as 别名]
# 或者: from inception.slim.losses import l1_regularizer [as 别名]
def testL1RegularizerWithScope(self):
with self.test_session():
shape = [5, 5, 5]
num_elem = 5 * 5 * 5
tensor = tf.constant(1.0, shape=shape)
loss = losses.l1_regularizer(scope='L1')(tensor)
self.assertEquals(loss.op.name, 'L1/value')
self.assertAlmostEqual(loss.eval(), num_elem, 5)
示例3: testL1RegularizerWithWeight
# 需要导入模块: from inception.slim import losses [as 别名]
# 或者: from inception.slim.losses import l1_regularizer [as 别名]
def testL1RegularizerWithWeight(self):
with self.test_session():
shape = [5, 5, 5]
num_elem = 5 * 5 * 5
tensor = tf.constant(1.0, shape=shape)
weight = 0.01
loss = losses.l1_regularizer(weight)(tensor)
self.assertEquals(loss.op.name, 'L1Regularizer/value')
self.assertAlmostEqual(loss.eval(), num_elem * weight, 5)