本文整理汇总了Python中inception.image_processing.inputs方法的典型用法代码示例。如果您正苦于以下问题:Python image_processing.inputs方法的具体用法?Python image_processing.inputs怎么用?Python image_processing.inputs使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类inception.image_processing
的用法示例。
在下文中一共展示了image_processing.inputs方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: evaluate
# 需要导入模块: from inception import image_processing [as 别名]
# 或者: from inception.image_processing import inputs [as 别名]
def evaluate(dataset):
"""Evaluate model on Dataset for a number of steps."""
with tf.Graph().as_default():
# Get images and labels from the dataset.
images, labels = image_processing.inputs(dataset)
# Number of classes in the Dataset label set plus 1.
# Label 0 is reserved for an (unused) background class.
num_classes = dataset.num_classes() + 1
# Build a Graph that computes the logits predictions from the
# inference model.
logits, _ = inception.inference(images, num_classes)
# Calculate predictions.
top_1_op = tf.nn.in_top_k(logits, labels, 1)
top_5_op = tf.nn.in_top_k(logits, labels, 5)
# Restore the moving average version of the learned variables for eval.
variable_averages = tf.train.ExponentialMovingAverage(
inception.MOVING_AVERAGE_DECAY)
variables_to_restore = variable_averages.variables_to_restore()
saver = tf.train.Saver(variables_to_restore)
# Build the summary operation based on the TF collection of Summaries.
summary_op = tf.summary.merge_all()
graph_def = tf.get_default_graph().as_graph_def()
summary_writer = tf.summary.FileWriter(FLAGS.eval_dir,
graph_def=graph_def)
while True:
_eval_once(saver, summary_writer, top_1_op, top_5_op, summary_op)
if FLAGS.run_once:
break
time.sleep(FLAGS.eval_interval_secs)
示例2: evaluate
# 需要导入模块: from inception import image_processing [as 别名]
# 或者: from inception.image_processing import inputs [as 别名]
def evaluate(dataset):
"""Evaluate model on Dataset for a number of steps."""
with tf.Graph().as_default():
# Get images and labels from the dataset.
images, labels, filenames = image_processing.inputs(dataset,batch_size=FLAGS.batch_size)
# Number of classes in the Dataset label set plus 1.
# Label 0 is reserved for an (unused) background class.
num_classes = dataset.num_classes() + 1
# Build a Graph that computes the logits predictions from the
# inference model.
logits, _ = inception.inference(images, num_classes)
# Calculate predictions.
#top_1_op = tf.nn.in_top_k(logits, labels, 1)
top_1_op = tf.argmax(logits, 1)
#top_1_op = logits
#top_1_op = tf.nn.softmax(logits)
# Restore the moving average version of the learned variables for eval.
variable_averages = tf.train.ExponentialMovingAverage(
inception.MOVING_AVERAGE_DECAY)
variables_to_restore = variable_averages.variables_to_restore()
saver = tf.train.Saver(variables_to_restore)
graph_def = tf.get_default_graph().as_graph_def()
while True:
_eval_once(saver, top_1_op, filenames,labels)
break
示例3: evaluate
# 需要导入模块: from inception import image_processing [as 别名]
# 或者: from inception.image_processing import inputs [as 别名]
def evaluate(dataset):
"""Evaluate model on Dataset for a number of steps."""
with tf.Graph().as_default():
# Get images and labels from the dataset.
images, labels, _ = image_processing.inputs(dataset)
# Number of classes in the Dataset label set plus 1.
# Label 0 is reserved for an (unused) background class.
num_classes = dataset.num_classes() + 1
# Build a Graph that computes the logits predictions from the
# inference model.
logits, _ = inception.inference(images, num_classes)
# Calculate predictions.
top_1_op = tf.nn.in_top_k(logits, labels, 1)
top_5_op = tf.nn.in_top_k(logits, labels, 5)
# Restore the moving average version of the learned variables for eval.
variable_averages = tf.train.ExponentialMovingAverage(
inception.MOVING_AVERAGE_DECAY)
variables_to_restore = variable_averages.variables_to_restore()
saver = tf.train.Saver(variables_to_restore)
# Build the summary operation based on the TF collection of Summaries.
summary_op = tf.merge_all_summaries()
graph_def = tf.get_default_graph().as_graph_def()
summary_writer = tf.train.SummaryWriter(FLAGS.eval_dir,
graph_def=graph_def)
while True:
_eval_once(saver, summary_writer, top_1_op, top_5_op, summary_op)
if FLAGS.run_once:
break
time.sleep(FLAGS.eval_interval_secs)
示例4: evaluate
# 需要导入模块: from inception import image_processing [as 别名]
# 或者: from inception.image_processing import inputs [as 别名]
def evaluate(dataset):
"""Evaluate model on Dataset for a number of steps."""
with tf.Graph().as_default():
# Get images and labels from the dataset.
images, labels = image_processing.inputs(dataset)
# Number of classes in the Dataset label set plus 1.
# Label 0 is reserved for an (unused) background class.
num_classes = dataset.num_classes() + 1
# Build a Graph that computes the logits predictions from the
# inference model.
logits, _ = inception.inference(images, num_classes)
# Calculate predictions.
top_1_op = tf.nn.in_top_k(logits, labels, 1)
top_5_op = tf.nn.in_top_k(logits, labels, 5)
# Restore the moving average version of the learned variables for eval.
variable_averages = tf.train.ExponentialMovingAverage(
inception.MOVING_AVERAGE_DECAY)
variables_to_restore = variable_averages.variables_to_restore()
saver = tf.train.Saver(variables_to_restore)
# Build the summary operation based on the TF collection of Summaries.
summary_op = tf.merge_all_summaries()
graph_def = tf.get_default_graph().as_graph_def()
summary_writer = tf.train.SummaryWriter(FLAGS.eval_dir,
graph_def=graph_def)
while True:
_eval_once(saver, summary_writer, top_1_op, top_5_op, summary_op)
if FLAGS.run_once:
break
time.sleep(FLAGS.eval_interval_secs)
示例5: evaluate
# 需要导入模块: from inception import image_processing [as 别名]
# 或者: from inception.image_processing import inputs [as 别名]
def evaluate(dataset):
"""Evaluate model on Dataset for a number of steps."""
with tf.Graph().as_default(), tf.device(FLAGS.device):
#with tf.Graph().as_default():
# Get images and labels from the dataset.
images, labels = image_processing.inputs(dataset)
# Number of classes in the Dataset label set plus 1.
# Label 0 is reserved for an (unused) background class.
if FLAGS.dataset_name == 'imagenet':
num_classes = dataset.num_classes() + 1
else:
num_classes = dataset.num_classes()
# Build a Graph that computes the logits predictions from the
# inference model.
logits, _ = inception.inference(images, num_classes, net=FLAGS.net)
# Calculate predictions.
top_1_op = tf.nn.in_top_k(logits, labels, 1)
top_5_op = tf.nn.in_top_k(logits, labels, 5)
if FLAGS.restore_avg_var:
# Restore the moving average version of the learned variables for eval.
variable_averages = tf.train.ExponentialMovingAverage(
inception.MOVING_AVERAGE_DECAY)
variables_to_restore = variable_averages.variables_to_restore()
saver = tf.train.Saver(variables_to_restore)
if FLAGS.tower>=0:
var_dic = {}
for _name, _var in variables_to_restore.items():
_var_name = '%s_%d' % (inception.TOWER_NAME, FLAGS.tower) + '/' + _name
var_dic[_var_name] = _var
saver = tf.train.Saver(var_dic)
else:
saver = tf.train.Saver()
if FLAGS.tower>=0:
var_dic = {}
_vars = tf.global_variables()
for _var in _vars:
_var_name = '%s_%d' % (inception.TOWER_NAME, FLAGS.tower) + '/' + _var.op.name
var_dic[_var_name] = _var
saver = tf.train.Saver(var_dic)
# Build the summary operation based on the TF collection of Summaries.
summaries = tf.get_collection(tf.GraphKeys.SUMMARIES)
summary_op = tf.summary.merge(summaries)
last_eval_step = -1
summary_writer = tf.summary.FileWriter(FLAGS.eval_dir,
graph=tf.get_default_graph())
while True:
last_eval_step = _eval_once(saver, summary_writer, top_1_op, top_5_op, summary_op, last_eval_step)
if FLAGS.run_once:
break
time.sleep(FLAGS.eval_interval_secs)