本文整理汇总了Python中imutils.is_cv2方法的典型用法代码示例。如果您正苦于以下问题:Python imutils.is_cv2方法的具体用法?Python imutils.is_cv2怎么用?Python imutils.is_cv2使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类imutils
的用法示例。
在下文中一共展示了imutils.is_cv2方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: process_image
# 需要导入模块: import imutils [as 别名]
# 或者: from imutils import is_cv2 [as 别名]
def process_image(self, frame):
frame = imutils.resize(frame, width=min(500, frame.shape[1]))
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (21, 21), 0)
if self.avg is None:
print('Starting background model...')
self.avg = gray.copy().astype('float')
return frame
cv2.accumulateWeighted(gray, self.avg, 0.5)
frameDelta = cv2.absdiff(gray, cv2.convertScaleAbs(self.avg))
thresh = cv2.threshold(frameDelta, 5, 255, cv2.THRESH_BINARY)[1]
thresh = cv2.dilate(thresh, None, iterations=2)
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if imutils.is_cv2() else cnts[1]
for c in cnts:
if cv2.contourArea(c) < 5000:
continue
(x, y, w, h) = cv2.boundingRect(c)
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
return frame
示例2: findContour
# 需要导入模块: import imutils [as 别名]
# 或者: from imutils import is_cv2 [as 别名]
def findContour(image):
#find contours in the thresholded image
cnts = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE )
cnts = cnts[0] if imutils.is_cv2() else cnts[1]
return cnts
示例3: describe
# 需要导入模块: import imutils [as 别名]
# 或者: from imutils import is_cv2 [as 别名]
def describe(self, image):
hist = cv2.calcHist([image], [0, 1, 2],
None, self.bins, [0, 256, 0, 256, 0, 256])
if imutils.is_cv2():
hist = cv2.normalize(hist)
else:
hist = cv2.normalize(hist,hist)
return hist.flatten()
示例4: _find_color
# 需要导入模块: import imutils [as 别名]
# 或者: from imutils import is_cv2 [as 别名]
def _find_color(self):
# from https://www.pyimagesearch.com/2015/09/14/ball-tracking-with-opencv/
# and https://thecodacus.com/opencv-object-tracking-colour-detection-python/#.W2DHFd_IQsM
blurred = cv2.GaussianBlur(self.cur_img, (11, 11), 0)
hsv = cv2.cvtColor(blurred, cv2.COLOR_BGR2HSV)
try:
# having color values in file allows finding values easier
with open(os.path.join(os.path.dirname(__file__), "color.json")) as fhd:
data = json.loads(fhd.read())
lower = tuple(data[0])
upper = tuple(data[1])
except BaseException:
logging.debug("%s", traceback.format_exc())
lower = (100, 100, 100,)
upper = (130, 255, 255,)
mask = cv2.inRange(hsv, lower, upper)
mask = cv2.erode(mask, None, iterations=5)
mask = cv2.dilate(mask, None, iterations=5)
# if not (int(time.time()) % 2):
# self.cur_img = mask
ret, thresh = cv2.threshold(mask, 20, 255, 0)
cnts = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
cnts = cnts[0] if imutils.is_cv2() else cnts[1]
return self._reduce([cv2.boundingRect(c) for c in cnts])
示例5: find_marker
# 需要导入模块: import imutils [as 别名]
# 或者: from imutils import is_cv2 [as 别名]
def find_marker(image):
# convert the image to grayscale, blur it, and detect edges
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (5, 5), 0)
edged = cv2.Canny(gray, 35, 125)
# find the contours in the edged image and keep the largest one;
# we'll assume that this is our piece of paper in the image
cnts = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if imutils.is_cv2() else cnts[1]
c = max(cnts, key = cv2.contourArea)
# compute the bounding box of the of the paper region and return it
return cv2.minAreaRect(c)
示例6: handle_new_frame
# 需要导入模块: import imutils [as 别名]
# 或者: from imutils import is_cv2 [as 别名]
def handle_new_frame(self, frame, past_frame):
(h, w) = frame.shape[:2]
r = 500 / float(w)
dim = (500, int(h * r))
frame = cv2.resize(frame, dim, cv2.INTER_AREA) # We resize the frame
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # We apply a black & white filter
gray = cv2.GaussianBlur(gray, (21, 21), 0) # Then we blur the picture
# if the first frame is None, initialize it because there is no frame for comparing the current one with a previous one
if past_frame is None:
past_frame = gray
return past_frame
# check if past_frame and current have the same sizes
(h_past_frame, w_past_frame) = past_frame.shape[:2]
(h_current_frame, w_current_frame) = gray.shape[:2]
if h_past_frame != h_current_frame or w_past_frame != w_current_frame: # This shouldnt occur but this is error handling
logger.error('Past frame and current frame do not have the same sizes {0} {1} {2} {3}'.format(h_past_frame, w_past_frame, h_current_frame, w_current_frame))
return
# Detect when too dark to reduce false alarms
if self.camera.digital_gain == Fraction(187/128) and self.camera.analog_gain == Fraction(8):
if not self.too_dark_message_printed:
logger.info("Too dark to run motion detection")
self.too_dark_message_printed = True
return None
else:
self.too_dark_message_printed = False
# compute the absolute difference between the current frame and first frame
frame_delta = cv2.absdiff(past_frame, gray)
# then apply a threshold to remove camera motion and other false positives (like light changes)
thresh = cv2.threshold(frame_delta, 50, 255, cv2.THRESH_BINARY)[1]
# dilate the thresholded image to fill in holes, then find contours on thresholded image
thresh = cv2.dilate(thresh, None, iterations=2)
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if imutils.is_cv2() else cnts[1]
# loop over the contours
for c in cnts:
# if the contour is too small, ignore it
countour_area = cv2.contourArea(c)
if countour_area < self.motion_detection_threshold:
continue
logger.info("Motion detected! Motion level is {0}, threshold is {1}".format(countour_area, self.motion_detection_threshold))
# Motion detected because there is a contour that is larger than the specified self.motion_detection_threshold
# compute the bounding box for the contour, draw it on the frame,
(x, y, w, h) = cv2.boundingRect(c)
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
self.handle_motion_detected(frame)
return None
示例7: detectSquareChange
# 需要导入模块: import imutils [as 别名]
# 或者: from imutils import is_cv2 [as 别名]
def detectSquareChange(self, previous, current, debug=True):
"""
Take a previous and a current image and returns the squares where a change happened, i.e. a figure has been
moved from or to.
"""
debugImg = current.copy()
# Convert the images to grayscale
grayA = cv2.cvtColor(previous, cv2.COLOR_BGR2GRAY)
grayB = cv2.cvtColor(current, cv2.COLOR_BGR2GRAY)
# Computes the Structural Similarity Index (SSIM) between previous and current
(score, diff) = compare_ssim(grayA, grayB, full=True)
diff = (diff * 255).astype("uint8")
## DEBUG
# print("SSIM: {}".format(score))
# Threshold the difference image, followed by finding contours to obtain the regions of the two input images that differ
thresh = cv2.threshold(diff, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if imutils.is_cv2() else cnts[1]
# Loop over the contours to return centres of differences
centres = []
for c in cnts:
# Compute the bounding box and find its centre
try:
# Area
area = cv2.contourArea(c)
if area > 100:
(x, y, w, h) = cv2.boundingRect(c)
centre = (int(x + w / 2), int(y + h / 2))
centres.append(centre)
cv2.circle(debugImg, centre, 3, 255, 2)
cv2.rectangle(debugImg, (x, y), (x + w, y + h), (0, 0, 255), 2)
except:
pass
## DEBUG
if debug:
cv2.imshow("Detected Move", debugImg)
return centres