本文整理汇总了Python中imgaug.augmenters.SomeOf方法的典型用法代码示例。如果您正苦于以下问题:Python augmenters.SomeOf方法的具体用法?Python augmenters.SomeOf怎么用?Python augmenters.SomeOf使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类imgaug.augmenters
的用法示例。
在下文中一共展示了augmenters.SomeOf方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import SomeOf [as 别名]
def __init__(self, dataset_path,scale,k_fold_test=1, mode='train'):
super().__init__()
self.mode = mode
self.img_path=dataset_path+'/img'
self.mask_path=dataset_path+'/mask'
self.image_lists,self.label_lists=self.read_list(self.img_path,k_fold_test=k_fold_test)
self.flip =iaa.SomeOf((2,4),[
iaa.Fliplr(0.5),
iaa.Flipud(0.5),
iaa.Affine(rotate=(-30, 30)),
iaa.AdditiveGaussianNoise(scale=(0.0,0.08*255))], random_order=True)
# resize
self.resize_label = transforms.Resize(scale, Image.NEAREST)
self.resize_img = transforms.Resize(scale, Image.BILINEAR)
# normalization
self.to_tensor = transforms.ToTensor()
示例2: __init__
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import SomeOf [as 别名]
def __init__(self, augmentation_rate):
self.augs = iaa.Sometimes(
augmentation_rate,
iaa.SomeOf(
(4, 7),
[
iaa.Affine(rotate=(-10, 10)),
iaa.Fliplr(0.2),
iaa.AverageBlur(k=(2, 10)),
iaa.Add((-10, 10), per_channel=0.5),
iaa.Multiply((0.75, 1.25), per_channel=0.5),
iaa.ContrastNormalization((0.5, 2.0), per_channel=0.5),
iaa.Crop(px=(0, 20))
],
random_order=True
)
)
示例3: create_augmenter
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import SomeOf [as 别名]
def create_augmenter(stage: str = "train"):
if stage == "train":
return iaa.Sequential([
iaa.Fliplr(0.5),
iaa.CropAndPad(px=(0, 112), sample_independently=False),
iaa.Affine(translate_percent={"x": (-0.4, 0.4), "y": (-0.4, 0.4)}),
iaa.SomeOf((0, 3), [
iaa.AddToHueAndSaturation((-10, 10)),
iaa.Affine(scale={"x": (0.9, 1.1), "y": (0.9, 1.1)}),
iaa.GaussianBlur(sigma=(0, 1.0)),
iaa.AdditiveGaussianNoise(scale=0.05 * 255)
])
])
elif stage == "val":
return iaa.Sequential([
iaa.CropAndPad(px=(0, 112), sample_independently=False),
iaa.Affine(translate_percent={"x": (-0.4, 0.4), "y": (-0.4, 0.4)}),
])
elif stage == "test":
return iaa.Sequential([])
示例4: init_augmentations
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import SomeOf [as 别名]
def init_augmentations(self):
if self.transform_probability > 0 and self.use_imgaug:
augmentations = iaa.Sometimes(
self.transform_probability,
iaa.Sequential([
iaa.SomeOf(
(1, None),
[
iaa.AddToHueAndSaturation(iap.Uniform(-20, 20), per_channel=True),
iaa.GaussianBlur(sigma=(0, 1.0)),
iaa.LinearContrast((0.75, 1.0)),
iaa.PiecewiseAffine(scale=(0.01, 0.02), mode='edge'),
],
random_order=True
),
iaa.Resize(
{"height": (16, self.image_size.height), "width": "keep-aspect-ratio"},
interpolation=imgaug.ALL
),
])
)
else:
augmentations = None
return augmentations
示例5: amaugimg
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import SomeOf [as 别名]
def amaugimg(image):
#数据增强
image = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)
seq = iaa.Sequential([
# iaa.Affine(rotate=(-5, 5),
# shear=(-5, 5),
# mode='edge'),
iaa.SomeOf((0, 2), #选择数据增强
[
iaa.GaussianBlur((0, 1.5)),
iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.01 * 255), per_channel=0.5),
# iaa.AddToHueAndSaturation((-5, 5)), # change hue and saturation
iaa.PiecewiseAffine(scale=(0.01, 0.03)),
iaa.PerspectiveTransform(scale=(0.01, 0.1))
],
random_order=True
)
])
image = seq.augment_image(image)
image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
return image
示例6: augment
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import SomeOf [as 别名]
def augment(batch, kinds, random_state):
''' perform data augmetation on the image data in batch.
'''
if len(batch['input'].shape) != 4:
return batch
assert len(batch['input'].shape) == 4
batch_aug = {}
batch_aug.update(batch)
seq = iaa.SomeOf(
(0, None),
[augmentations[kind] for kind in kinds],
random_order=True,
random_state=random_state,
)
batch_aug['input'] = seq.augment_images(batch_aug['input'])
return batch_aug
示例7: main
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import SomeOf [as 别名]
def main():
nb_checked = 0
augs = iaa.SomeOf((1, None), [
iaa.Resize({"height": (1, 100), "width": (1, 100)}),
iaa.Affine(
scale=(0.01, 2.0),
rotate=(-360, 360),
shear=(-360, 360),
translate_px={"x": (-50, 50), "y": (-50, 50)}
),
iaa.PerspectiveTransform((0.01, 0.2))
])
height, width = 100, 200
while True:
poly = create_random_polygon(height, width, nb_checked)
psoi = PolygonsOnImage([poly], shape=(height, width, 3))
psoi_aug = augs.augment_polygons(psoi)
if not poly.is_valid or not psoi_aug.polygons[0].is_valid:
print("poly: ", poly, poly.is_valid)
print("poly_aug: ", psoi_aug.polygons[0], psoi_aug.polygons[0].is_valid)
assert poly.is_valid
assert psoi_aug.polygons[0].is_valid
nb_checked += 1
if nb_checked % 100 == 0:
print("Checked %d..." % (nb_checked,))
if nb_checked > 100000:
break
示例8: aug_on_fly
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import SomeOf [as 别名]
def aug_on_fly(img, det_mask, cls_mask):
"""Do augmentation with different combination on each training batch
"""
def image_basic_augmentation(image, masks, ratio_operations=0.9):
# without additional operations
# according to the paper, operations such as shearing, fliping horizontal/vertical,
# rotating, zooming and channel shifting will be apply
sometimes = lambda aug: iaa.Sometimes(ratio_operations, aug)
hor_flip_angle = np.random.uniform(0, 1)
ver_flip_angle = np.random.uniform(0, 1)
seq = iaa.Sequential([
sometimes(
iaa.SomeOf((0, 5), [
iaa.Fliplr(hor_flip_angle),
iaa.Flipud(ver_flip_angle),
iaa.Affine(shear=(-16, 16)),
iaa.Affine(scale={'x': (1, 1.6), 'y': (1, 1.6)}),
iaa.PerspectiveTransform(scale=(0.01, 0.1))
]))
])
det_mask, cls_mask = masks[0], masks[1]
seq_to_deterministic = seq.to_deterministic()
aug_img = seq_to_deterministic.augment_images(image)
aug_det_mask = seq_to_deterministic.augment_images(det_mask)
aug_cls_mask = seq_to_deterministic.augment_images(cls_mask)
return aug_img, aug_det_mask, aug_cls_mask
aug_image, aug_det_mask, aug_cls_mask = image_basic_augmentation(image=img, masks=[det_mask, cls_mask])
return aug_image, aug_det_mask, aug_cls_mask
示例9: chapter_augmenters_someof
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import SomeOf [as 别名]
def chapter_augmenters_someof():
aug = iaa.SomeOf(2, [
iaa.Affine(rotate=45),
iaa.AdditiveGaussianNoise(scale=0.2*255),
iaa.Add(50, per_channel=True),
iaa.Sharpen(alpha=0.5)
])
run_and_save_augseq(
"someof.jpg", aug,
[ia.quokka(size=(128, 128)) for _ in range(8)], cols=4, rows=2
)
aug = iaa.SomeOf((0, None), [
iaa.Affine(rotate=45),
iaa.AdditiveGaussianNoise(scale=0.2*255),
iaa.Add(50, per_channel=True),
iaa.Sharpen(alpha=0.5)
])
run_and_save_augseq(
"someof_0_to_none.jpg", aug,
[ia.quokka(size=(128, 128)) for _ in range(8)], cols=4, rows=2
)
aug = iaa.SomeOf(2, [
iaa.Affine(rotate=45),
iaa.AdditiveGaussianNoise(scale=0.2*255),
iaa.Add(50, per_channel=True),
iaa.Sharpen(alpha=0.5)
], random_order=True)
run_and_save_augseq(
"someof_random_order.jpg", aug,
[ia.quokka(size=(128, 128)) for _ in range(8)], cols=4, rows=2
)
示例10: train
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import SomeOf [as 别名]
def train(model, dataset_dir, subset):
"""Train the model."""
# Training dataset.
dataset_train = NucleusDataset()
dataset_train.load_nucleus(dataset_dir, subset)
dataset_train.prepare()
# Validation dataset
dataset_val = NucleusDataset()
dataset_val.load_nucleus(dataset_dir, "val")
dataset_val.prepare()
# Image augmentation
# http://imgaug.readthedocs.io/en/latest/source/augmenters.html
augmentation = iaa.SomeOf((0, 2), [
iaa.Fliplr(0.5),
iaa.Flipud(0.5),
iaa.OneOf([iaa.Affine(rotate=90),
iaa.Affine(rotate=180),
iaa.Affine(rotate=270)]),
iaa.Multiply((0.8, 1.5)),
iaa.GaussianBlur(sigma=(0.0, 5.0))
])
# *** This training schedule is an example. Update to your needs ***
# If starting from imagenet, train heads only for a bit
# since they have random weights
print("Train network heads")
model.train(dataset_train, dataset_val,
learning_rate=config.LEARNING_RATE,
epochs=20,
augmentation=augmentation,
layers='heads')
print("Train all layers")
model.train(dataset_train, dataset_val,
learning_rate=config.LEARNING_RATE,
epochs=40,
augmentation=augmentation,
layers='all')
############################################################
# RLE Encoding
############################################################
示例11: _create_augment_pipeline
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import SomeOf [as 别名]
def _create_augment_pipeline():
from imgaug import augmenters as iaa
### augmentors by https://github.com/aleju/imgaug
sometimes = lambda aug: iaa.Sometimes(0.5, aug)
# Define our sequence of augmentation steps that will be applied to every image
# All augmenters with per_channel=0.5 will sample one value _per image_
# in 50% of all cases. In all other cases they will sample new values
# _per channel_.
aug_pipe = iaa.Sequential(
[
# apply the following augmenters to most images
#iaa.Fliplr(0.5), # horizontally flip 50% of all images
#iaa.Flipud(0.2), # vertically flip 20% of all images
#sometimes(iaa.Crop(percent=(0, 0.1))), # crop images by 0-10% of their height/width
sometimes(iaa.Affine(
#scale={"x": (0.8, 1.2), "y": (0.8, 1.2)}, # scale images to 80-120% of their size, individually per axis
#translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)}, # translate by -20 to +20 percent (per axis)
#rotate=(-5, 5), # rotate by -45 to +45 degrees
#shear=(-5, 5), # shear by -16 to +16 degrees
#order=[0, 1], # use nearest neighbour or bilinear interpolation (fast)
#cval=(0, 255), # if mode is constant, use a cval between 0 and 255
#mode=ia.ALL # use any of scikit-image's warping modes (see 2nd image from the top for examples)
)),
# execute 0 to 5 of the following (less important) augmenters per image
# don't execute all of them, as that would often be way too strong
iaa.SomeOf((0, 5),
[
#sometimes(iaa.Superpixels(p_replace=(0, 1.0), n_segments=(20, 200))), # convert images into their superpixel representation
iaa.OneOf([
iaa.GaussianBlur((0, 3.0)), # blur images with a sigma between 0 and 3.0
iaa.AverageBlur(k=(2, 7)), # blur image using local means with kernel sizes between 2 and 7
iaa.MedianBlur(k=(3, 11)), # blur image using local medians with kernel sizes between 2 and 7
]),
iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)), # sharpen images
#iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)), # emboss images
# search either for all edges or for directed edges
#sometimes(iaa.OneOf([
# iaa.EdgeDetect(alpha=(0, 0.7)),
# iaa.DirectedEdgeDetect(alpha=(0, 0.7), direction=(0.0, 1.0)),
#])),
iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5), # add gaussian noise to images
iaa.OneOf([
iaa.Dropout((0.01, 0.1), per_channel=0.5), # randomly remove up to 10% of the pixels
#iaa.CoarseDropout((0.03, 0.15), size_percent=(0.02, 0.05), per_channel=0.2),
]),
#iaa.Invert(0.05, per_channel=True), # invert color channels
iaa.Add((-10, 10), per_channel=0.5), # change brightness of images (by -10 to 10 of original value)
iaa.Multiply((0.5, 1.5), per_channel=0.5), # change brightness of images (50-150% of original value)
iaa.ContrastNormalization((0.5, 2.0), per_channel=0.5), # improve or worsen the contrast
#iaa.Grayscale(alpha=(0.0, 1.0)),
#sometimes(iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25)), # move pixels locally around (with random strengths)
#sometimes(iaa.PiecewiseAffine(scale=(0.01, 0.05))) # sometimes move parts of the image around
],
random_order=True
)
],
random_order=True
)
return aug_pipe
示例12: heavy_aug_on_fly
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import SomeOf [as 别名]
def heavy_aug_on_fly(img, det_mask):
"""Do augmentation with different combination on each training batch
"""
def image_heavy_augmentation(image, det_masks, ratio_operations=0.6):
# according to the paper, operations such as shearing, fliping horizontal/vertical,
# rotating, zooming and channel shifting will be apply
sometimes = lambda aug: iaa.Sometimes(ratio_operations, aug)
edge_detect_sometime = lambda aug: iaa.Sometimes(0.1, aug)
elasitic_sometime = lambda aug:iaa.Sometimes(0.2, aug)
add_gauss_noise = lambda aug: iaa.Sometimes(0.15, aug)
hor_flip_angle = np.random.uniform(0, 1)
ver_flip_angle = np.random.uniform(0, 1)
seq = iaa.Sequential([
iaa.SomeOf((0, 5), [
iaa.Fliplr(hor_flip_angle),
iaa.Flipud(ver_flip_angle),
iaa.Affine(shear=(-16, 16)),
iaa.Affine(scale={'x': (1, 1.6), 'y': (1, 1.6)}),
iaa.PerspectiveTransform(scale=(0.01, 0.1)),
# These are additional augmentation.
#iaa.ContrastNormalization((0.75, 1.5))
]),
edge_detect_sometime(iaa.OneOf([
iaa.EdgeDetect(alpha=(0, 0.7)),
iaa.DirectedEdgeDetect(alpha=(0,0.7), direction=(0.0, 1.0)
)
])),
add_gauss_noise(iaa.AdditiveGaussianNoise(loc=0,
scale=(0.0, 0.05*255),
per_channel=0.5)
),
iaa.Sometimes(0.3,
iaa.GaussianBlur(sigma=(0, 0.5))
),
elasitic_sometime(
iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25))
])
seq_to_deterministic = seq.to_deterministic()
aug_img = seq_to_deterministic.augment_images(image)
aug_det_mask = seq_to_deterministic.augment_images(det_masks)
return aug_img, aug_det_mask
aug_image, aug_det_mask = image_heavy_augmentation(image=img, det_masks=det_mask)
return aug_image, aug_det_mask
示例13: get_augmentations
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import SomeOf [as 别名]
def get_augmentations():
# applies the given augmenter in 50% of all cases,
sometimes = lambda aug: iaa.Sometimes(0.5, aug)
# Define our sequence of augmentation steps that will be applied to every image
seq = iaa.Sequential([
# execute 0 to 5 of the following (less important) augmenters per image
iaa.SomeOf((0, 5),
[
iaa.OneOf([
iaa.GaussianBlur((0, 3.0)),
iaa.AverageBlur(k=(2, 7)),
iaa.MedianBlur(k=(3, 11)),
]),
iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)),
iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)),
# search either for all edges or for directed edges,
# blend the result with the original image using a blobby mask
iaa.SimplexNoiseAlpha(iaa.OneOf([
iaa.EdgeDetect(alpha=(0.5, 1.0)),
iaa.DirectedEdgeDetect(alpha=(0.5, 1.0), direction=(0.0, 1.0)),
])),
iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5),
iaa.OneOf([
iaa.Dropout((0.01, 0.1), per_channel=0.5), # randomly remove up to 10% of the pixels
iaa.CoarseDropout((0.03, 0.15), size_percent=(0.02, 0.05), per_channel=0.2),
]),
iaa.Add((-10, 10), per_channel=0.5), # change brightness of images (by -10 to 10 of original value)
iaa.AddToHueAndSaturation((-20, 20)), # change hue and saturation
# either change the brightness of the whole image (sometimes
# per channel) or change the brightness of subareas
iaa.OneOf([
iaa.Multiply((0.5, 1.5), per_channel=0.5),
iaa.FrequencyNoiseAlpha(
exponent=(-4, 0),
first=iaa.Multiply((0.5, 1.5), per_channel=True),
second=iaa.ContrastNormalization((0.5, 2.0))
)
]),
iaa.ContrastNormalization((0.5, 2.0), per_channel=0.5), # improve or worsen the contrast
sometimes(iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25)), # move pixels locally around (with random strengths)
],
random_order=True
)
],
random_order=True
)
return seq
### data transforms
示例14: train
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import SomeOf [as 别名]
def train(model):
"""Train the model."""
# Training dataset.
augmentation = iaa.SomeOf((0, 2), [
iaa.Fliplr(0.5),
iaa.Multiply((0.6, 1.1)),
iaa.GaussianBlur(sigma=(0.0, 0.5))
])
dataset_train = AdrivingDatasetNoResize()
dataset_train.load_adriving(data_dir, "train", size = IMGSIZE)
# dataset_train.load_adriving(data_dir, "train")
dataset_train.prepare()
print(len(dataset_train.image_ids))
# Validation dataset
dataset_val = AdrivingDatasetNoResize()
dataset_val.load_adriving(data_dir, "val", size = IMGSIZE)
#dataset_val.load_adriving(data_dir, "val")
dataset_val.prepare()
# *** This training schedule is an example. Update to your needs ***
# Since we're using a very small dataset, and starting from
# COCO trained weights, we don't need to train too long. Also,
# no need to train all layers, just the heads should do it.
print("Training network heads")
# model.train_model(dataset_train, dataset_val,
# learning_rate=config.LEARNING_RATE/10,
# epochs=10,
# layers='heads')
model.train_model(dataset_train, dataset_val,
learning_rate=config.LEARNING_RATE, augmentation= augmentation,
epochs=200,layers='heads')
model.train_model(dataset_train, dataset_val,
learning_rate=config.LEARNING_RATE/10, augmentation= augmentation,
epochs=200,layers='4+')
# --------------------------------------------------------------------------
############################################################
# Training
############################################################
开发者ID:wwoody827,项目名称:cvpr-2018-autonomous-driving-autopilot-solution,代码行数:44,代码来源:train_resnet_v2.py
示例15: train
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import SomeOf [as 别名]
def train(model):
"""Train the model."""
# Training dataset.
augmentation = iaa.SomeOf((0, 2), [
iaa.Fliplr(0.5),
iaa.Multiply((0.6, 1.1)),
iaa.GaussianBlur(sigma=(0.0, 0.5))
])
dataset_train = AdrivingDatasetNoResize()
dataset_train.load_adriving(data_dir, "train", size = IMGSIZE)
dataset_train.prepare()
print(len(dataset_train.image_ids))
# Validation dataset
dataset_val = AdrivingDatasetNoResize()
dataset_val.load_adriving(data_dir, "val", size = IMGSIZE)
dataset_val.prepare()
# *** This training schedule is an example. Update to your needs ***
# Since we're using a very small dataset, and starting from
# COCO trained weights, we don't need to train too long. Also,
# no need to train all layers, just the heads should do it.
print("Training network heads")
model.train_model(dataset_train,
dataset_val,
learning_rate=config.LEARNING_RATE,
augmentation= augmentation,
epochs=100,layers='heads')
model.train_model(dataset_train,
dataset_val,
learning_rate=config.LEARNING_RATE,
augmentation= augmentation,
epochs=100,layers='4+')
# --------------------------------------------------------------------------
############################################################
# Training
############################################################