当前位置: 首页>>代码示例>>Python>>正文


Python augmenters.PiecewiseAffine方法代码示例

本文整理汇总了Python中imgaug.augmenters.PiecewiseAffine方法的典型用法代码示例。如果您正苦于以下问题:Python augmenters.PiecewiseAffine方法的具体用法?Python augmenters.PiecewiseAffine怎么用?Python augmenters.PiecewiseAffine使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在imgaug.augmenters的用法示例。


在下文中一共展示了augmenters.PiecewiseAffine方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import PiecewiseAffine [as 别名]
def __init__(self):
        self.seq = iaa.Sequential([
            iaa.Sometimes(0.5, iaa.OneOf([
                iaa.GaussianBlur((0, 3.0)),  # blur images with a sigma between 0 and 3.0
                iaa.AverageBlur(k=(2, 7)),  # blur image using local means with kernel sizes between 2 and 7
                iaa.MedianBlur(k=(3, 11)),  # blur image using local medians with kernel sizes between 2 and 7
            ])),
            iaa.Sometimes(0.5, iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05 * 255), per_channel=0.5)),
            iaa.Sometimes(0.5, iaa.Add((-10, 10), per_channel=0.5)),
            iaa.Sometimes(0.5, iaa.AddToHueAndSaturation((-20, 20))),
            iaa.Sometimes(0.5, iaa.FrequencyNoiseAlpha(
                exponent=(-4, 0),
                first=iaa.Multiply((0.5, 1.5), per_channel=True),
                second=iaa.LinearContrast((0.5, 2.0))
            )),
            iaa.Sometimes(0.5, iaa.PiecewiseAffine(scale=(0.01, 0.05))),
            iaa.Sometimes(0.5, iaa.PerspectiveTransform(scale=(0.01, 0.1)))
        ], random_order=True) 
开发者ID:WenmuZhou,项目名称:crnn.gluon,代码行数:20,代码来源:augment.py

示例2: init_augmentations

# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import PiecewiseAffine [as 别名]
def init_augmentations(self):
        if self.transform_probability > 0 and self.use_imgaug:
            augmentations = iaa.Sometimes(
                self.transform_probability,
                iaa.Sequential([
                    iaa.SomeOf(
                        (1, None),
                        [
                            iaa.AddToHueAndSaturation(iap.Uniform(-20, 20), per_channel=True),
                            iaa.GaussianBlur(sigma=(0, 1.0)),
                            iaa.LinearContrast((0.75, 1.0)),
                            iaa.PiecewiseAffine(scale=(0.01, 0.02), mode='edge'),
                        ],
                        random_order=True
                    ),
                    iaa.Resize(
                        {"height": (16, self.image_size.height), "width": "keep-aspect-ratio"},
                        interpolation=imgaug.ALL
                    ),
                ])
            )
        else:
            augmentations = None
        return augmentations 
开发者ID:Bartzi,项目名称:kiss,代码行数:26,代码来源:image_dataset.py

示例3: amaugimg

# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import PiecewiseAffine [as 别名]
def amaugimg(image):
    #数据增强
    image = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)

    seq = iaa.Sequential([
        # iaa.Affine(rotate=(-5, 5),
        #            shear=(-5, 5),
        #            mode='edge'),

        iaa.SomeOf((0, 2),                        #选择数据增强
                   [
                       iaa.GaussianBlur((0, 1.5)),
                       iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.01 * 255), per_channel=0.5),
                       # iaa.AddToHueAndSaturation((-5, 5)),  # change hue and saturation
                       iaa.PiecewiseAffine(scale=(0.01, 0.03)),
                       iaa.PerspectiveTransform(scale=(0.01, 0.1))
                   ],
                   random_order=True
                   )
    ])
    image = seq.augment_image(image)

    image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
    return image 
开发者ID:LcenArthas,项目名称:CVWC2019-Amur-Tiger-Re-ID,代码行数:26,代码来源:dataset_loader.py

示例4: main

# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import PiecewiseAffine [as 别名]
def main():
    image = ia.data.quokka(size=0.5)
    print(image.shape)
    kps = [
        ia.KeypointsOnImage(
            [
                ia.Keypoint(x=123, y=102),
                ia.Keypoint(x=182, y=98),
                ia.Keypoint(x=155, y=134),
                ia.Keypoint(x=-20, y=20)
            ],
            shape=(image.shape[0], image.shape[1])
        )
    ]
    print("image shape:", image.shape)

    augs = [
        iaa.PiecewiseAffine(scale=0.05),
        iaa.PiecewiseAffine(scale=0.1),
        iaa.PiecewiseAffine(scale=0.2)
    ]

    ia.imshow(kps[0].draw_on_image(image))

    print("-----------------")
    print("Random aug per image")
    print("-----------------")
    for aug in augs:
        images_aug = []
        for _ in range(16):
            aug_det = aug.to_deterministic()
            img_aug = aug_det.augment_image(image)
            kps_aug = aug_det.augment_keypoints(kps)[0]
            img_aug_kps = keypoints_draw_on_image(kps_aug, img_aug)
            img_aug_kps = np.pad(img_aug_kps, ((1, 1), (1, 1), (0, 0)), mode="constant", constant_values=255)
            images_aug.append(img_aug_kps)
        print(aug.name)
        ia.imshow(ia.draw_grid(images_aug))


# TODO why was this used here? 
开发者ID:aleju,项目名称:imgaug,代码行数:43,代码来源:check_piecewise_affine.py

示例5: __init__

# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import PiecewiseAffine [as 别名]
def __init__(self, image_ids, epoch_size):
        super().__init__()
        self.image_ids = image_ids
        self.epoch_size = epoch_size
        self.elastic = iaa.ElasticTransformation(alpha=(0.25, 1.2), sigma=0.2)
        #self.piecewiseAffine = iaa.PiecewiseAffine(scale=(0.01, 0.05)) 
开发者ID:SpaceNetChallenge,项目名称:SpaceNet_Off_Nadir_Solutions,代码行数:8,代码来源:train154_9ch_fold.py

示例6: __init__

# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import PiecewiseAffine [as 别名]
def __init__(self, scale=(0.03, 0.05), nb_rows=4, nb_cols=4, prob=.5):
        super().__init__(prob)
        self.processor = iaa.PiecewiseAffine(scale, nb_rows, nb_cols) 
开发者ID:selimsef,项目名称:dsb2018_topcoders,代码行数:5,代码来源:transforms.py

示例7: imgaug

# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import PiecewiseAffine [as 别名]
def imgaug(args):
    # Number of batches and batch size for this example
    filename, root, fold_A = args
    img = cv2.imread(os.path.join(root,filename))
    print('image opened ' + os.path.join(root,filename))
    batch_size = 4
    for i in range(0,batch_size):
        imageio.imwrite(os.path.join(root, os.path.splitext(filename)[0] + '_' + str(i) + '.jpg'), img) #convert the current image in B into a jpg from png
    nb_batches = 1

    # Example augmentation sequence to run in the background
    sometimes = lambda aug: iaa.Sometimes(0.4, aug)
    augseq = iaa.Sequential(
            [
                iaa.PiecewiseAffine(scale=(0.01, 0.01005))
            ]
        )

    # Make batches out of the example image (here: 10 batches, each 32 times
    # the example image)
    batches = []
    for _ in range(nb_batches):
        batches.append(Batch(images=[img] * batch_size))

    #Save images
    for batch in augseq.augment_batches(batches, background=False):
        count = 0
        for img in batch.images_aug:
            path = os.path.join(fold_A,root.rsplit('/', 1)[-1], os.path.splitext(filename)[0] + '_' + str(count) + '.jpg')
            cv2.imwrite(path, img)
            print('image saved as: ' + path)
            count +=1 
开发者ID:thomasjhuang,项目名称:deep-learning-for-document-dewarping,代码行数:34,代码来源:preprocess.py

示例8: chapter_augmenters_piecewiseaffine

# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import PiecewiseAffine [as 别名]
def chapter_augmenters_piecewiseaffine():
    aug = iaa.PiecewiseAffine(scale=(0.01, 0.05))
    run_and_save_augseq(
        "piecewiseaffine.jpg", aug,
        [ia.quokka(size=(128, 128)) for _ in range(8)], cols=4, rows=2,
        quality=75
    )

    aug = iaa.PiecewiseAffine(scale=(0.01, 0.05))
    run_and_save_augseq(
        "piecewiseaffine_checkerboard.jpg", aug,
        [checkerboard(size=(128, 128)) for _ in range(8)], cols=4, rows=2,
        quality=75
    )

    scales = np.linspace(0.0, 0.3, num=8)
    run_and_save_augseq(
        "piecewiseaffine_vary_scales.jpg",
        [iaa.PiecewiseAffine(scale=scale) for scale in scales],
        [checkerboard(size=(128, 128)) for _ in range(8)], cols=8, rows=1,
        quality=75
    )

    gridvals = [2, 4, 6, 8, 10, 12, 14, 16]
    run_and_save_augseq(
        "piecewiseaffine_vary_grid.jpg",
        [iaa.PiecewiseAffine(scale=0.05, nb_rows=g, nb_cols=g) for g in gridvals],
        [checkerboard(size=(128, 128)) for _ in range(8)], cols=8, rows=1,
        quality=75
    ) 
开发者ID:JoshuaPiinRueyPan,项目名称:ViolenceDetection,代码行数:32,代码来源:generate_documentation_images.py

示例9: processor

# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import PiecewiseAffine [as 别名]
def processor(self):
        return iaa.PiecewiseAffine(self.scale, self.nb_rows, self.nb_cols, self.order, self.cval, self.mode) 
开发者ID:albumentations-team,项目名称:albumentations,代码行数:4,代码来源:transforms.py

示例10: _create_augment_pipeline

# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import PiecewiseAffine [as 别名]
def _create_augment_pipeline():
    from imgaug import augmenters as iaa
    
    ### augmentors by https://github.com/aleju/imgaug
    sometimes = lambda aug: iaa.Sometimes(0.5, aug)

    # Define our sequence of augmentation steps that will be applied to every image
    # All augmenters with per_channel=0.5 will sample one value _per image_
    # in 50% of all cases. In all other cases they will sample new values
    # _per channel_.
    aug_pipe = iaa.Sequential(
        [
            # apply the following augmenters to most images
            #iaa.Fliplr(0.5), # horizontally flip 50% of all images
            #iaa.Flipud(0.2), # vertically flip 20% of all images
            #sometimes(iaa.Crop(percent=(0, 0.1))), # crop images by 0-10% of their height/width
            sometimes(iaa.Affine(
                #scale={"x": (0.8, 1.2), "y": (0.8, 1.2)}, # scale images to 80-120% of their size, individually per axis
                #translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)}, # translate by -20 to +20 percent (per axis)
                #rotate=(-5, 5), # rotate by -45 to +45 degrees
                #shear=(-5, 5), # shear by -16 to +16 degrees
                #order=[0, 1], # use nearest neighbour or bilinear interpolation (fast)
                #cval=(0, 255), # if mode is constant, use a cval between 0 and 255
                #mode=ia.ALL # use any of scikit-image's warping modes (see 2nd image from the top for examples)
            )),
            # execute 0 to 5 of the following (less important) augmenters per image
            # don't execute all of them, as that would often be way too strong
            iaa.SomeOf((0, 5),
                [
                    #sometimes(iaa.Superpixels(p_replace=(0, 1.0), n_segments=(20, 200))), # convert images into their superpixel representation
                    iaa.OneOf([
                        iaa.GaussianBlur((0, 3.0)), # blur images with a sigma between 0 and 3.0
                        iaa.AverageBlur(k=(2, 7)), # blur image using local means with kernel sizes between 2 and 7
                        iaa.MedianBlur(k=(3, 11)), # blur image using local medians with kernel sizes between 2 and 7
                    ]),
                    iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)), # sharpen images
                    #iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)), # emboss images
                    # search either for all edges or for directed edges
                    #sometimes(iaa.OneOf([
                    #    iaa.EdgeDetect(alpha=(0, 0.7)),
                    #    iaa.DirectedEdgeDetect(alpha=(0, 0.7), direction=(0.0, 1.0)),
                    #])),
                    iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5), # add gaussian noise to images
                    iaa.OneOf([
                        iaa.Dropout((0.01, 0.1), per_channel=0.5), # randomly remove up to 10% of the pixels
                        #iaa.CoarseDropout((0.03, 0.15), size_percent=(0.02, 0.05), per_channel=0.2),
                    ]),
                    #iaa.Invert(0.05, per_channel=True), # invert color channels
                    iaa.Add((-10, 10), per_channel=0.5), # change brightness of images (by -10 to 10 of original value)
                    iaa.Multiply((0.5, 1.5), per_channel=0.5), # change brightness of images (50-150% of original value)
                    iaa.ContrastNormalization((0.5, 2.0), per_channel=0.5), # improve or worsen the contrast
                    #iaa.Grayscale(alpha=(0.0, 1.0)),
                    #sometimes(iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25)), # move pixels locally around (with random strengths)
                    #sometimes(iaa.PiecewiseAffine(scale=(0.01, 0.05))) # sometimes move parts of the image around
                ],
                random_order=True
            )
        ],
        random_order=True
    )
    return aug_pipe 
开发者ID:penny4860,项目名称:tf2-eager-yolo3,代码行数:63,代码来源:augment.py

示例11: main

# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import PiecewiseAffine [as 别名]
def main():
    image = ia.quokka(size=0.5)
    print(image.shape)
    kps = [
        ia.KeypointsOnImage(
            [
                ia.Keypoint(x=123, y=102),
                ia.Keypoint(x=182, y=98),
                ia.Keypoint(x=155, y=134),

                #ia.Keypoint(x=255, y=213),
                #ia.Keypoint(x=375, y=205),
                #ia.Keypoint(x=323, y=279),

                #ia.Keypoint(x=265, y=223),
                #ia.Keypoint(x=385, y=215),
                #ia.Keypoint(x=333, y=289),

                #ia.Keypoint(x=275, y=233),
                #ia.Keypoint(x=395, y=225),
                #ia.Keypoint(x=343, y=299),

                ia.Keypoint(x=-20, y=20)
            ],
            shape=(image.shape[0], image.shape[1])
        )
    ]
    #kps[0] = kps[0].on(image.shape)
    print("image shape:", image.shape)

    augs = [
        #iaa.PiecewiseAffine(scale=0),
        iaa.PiecewiseAffine(scale=0.05),
        iaa.PiecewiseAffine(scale=0.1),
        iaa.PiecewiseAffine(scale=0.2)
    ]

    #print("original", image.shape)
    misc.imshow(kps[0].draw_on_image(image))

    print("-----------------")
    print("Random aug per image")
    print("-----------------")
    for aug in augs:
        images_aug = []
        for _ in range(16):
            aug_det = aug.to_deterministic()
            img_aug = aug_det.augment_image(image)
            kps_aug = aug_det.augment_keypoints(kps)[0]
            #img_aug_kps = kps_aug.draw_on_image(img_aug)
            img_aug_kps = keypoints_draw_on_image(kps_aug, img_aug)
            img_aug_kps = np.pad(img_aug_kps, ((1, 1), (1, 1), (0, 0)), mode="constant", constant_values=255)
            #print(aug.name, img_aug_kps.shape, img_aug_kps.shape[1]/img_aug_kps.shape[0])
            images_aug.append(img_aug_kps)
            #misc.imshow(img_aug_kps)
        print(aug.name)
        misc.imshow(ia.draw_grid(images_aug)) 
开发者ID:JoshuaPiinRueyPan,项目名称:ViolenceDetection,代码行数:59,代码来源:check_piecewise_affine.py


注:本文中的imgaug.augmenters.PiecewiseAffine方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。