本文整理汇总了Python中imgaug.augmenters.OneOf方法的典型用法代码示例。如果您正苦于以下问题:Python augmenters.OneOf方法的具体用法?Python augmenters.OneOf怎么用?Python augmenters.OneOf使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类imgaug.augmenters
的用法示例。
在下文中一共展示了augmenters.OneOf方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import OneOf [as 别名]
def __init__(self):
self.seq = iaa.Sequential([
iaa.Sometimes(0.5, iaa.OneOf([
iaa.GaussianBlur((0, 3.0)), # blur images with a sigma between 0 and 3.0
iaa.AverageBlur(k=(2, 7)), # blur image using local means with kernel sizes between 2 and 7
iaa.MedianBlur(k=(3, 11)), # blur image using local medians with kernel sizes between 2 and 7
])),
iaa.Sometimes(0.5, iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05 * 255), per_channel=0.5)),
iaa.Sometimes(0.5, iaa.Add((-10, 10), per_channel=0.5)),
iaa.Sometimes(0.5, iaa.AddToHueAndSaturation((-20, 20))),
iaa.Sometimes(0.5, iaa.FrequencyNoiseAlpha(
exponent=(-4, 0),
first=iaa.Multiply((0.5, 1.5), per_channel=True),
second=iaa.LinearContrast((0.5, 2.0))
)),
iaa.Sometimes(0.5, iaa.PiecewiseAffine(scale=(0.01, 0.05))),
iaa.Sometimes(0.5, iaa.PerspectiveTransform(scale=(0.01, 0.1)))
], random_order=True)
示例2: _load_augmentation_aug_geometric
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import OneOf [as 别名]
def _load_augmentation_aug_geometric():
return iaa.OneOf([
iaa.Sequential([iaa.Fliplr(0.5), iaa.Flipud(0.2)]),
iaa.CropAndPad(percent=(-0.05, 0.1),
pad_mode='constant',
pad_cval=(0, 255)),
iaa.Crop(percent=(0.0, 0.1)),
iaa.Crop(percent=(0.3, 0.5)),
iaa.Crop(percent=(0.3, 0.5)),
iaa.Crop(percent=(0.3, 0.5)),
iaa.Sequential([
iaa.Affine(
# scale images to 80-120% of their size,
# individually per axis
scale={"x": (0.8, 1.2), "y": (0.8, 1.2)},
# translate by -20 to +20 percent (per axis)
translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)},
rotate=(-45, 45), # rotate by -45 to +45 degrees
shear=(-16, 16), # shear by -16 to +16 degrees
# use nearest neighbour or bilinear interpolation (fast)
order=[0, 1],
# if mode is constant, use a cval between 0 and 255
mode='constant',
cval=(0, 255),
# use any of scikit-image's warping modes
# (see 2nd image from the top for examples)
),
iaa.Sometimes(0.3, iaa.Crop(percent=(0.3, 0.5)))])
])
示例3: main
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import OneOf [as 别名]
def main():
aug = iaa.BlendAlphaMask(
iaa.SomeColorsMaskGen(),
iaa.OneOf([
iaa.TotalDropout(1.0),
iaa.AveragePooling(8)
])
)
aug2 = iaa.BlendAlphaSomeColors(iaa.OneOf([
iaa.TotalDropout(1.0),
iaa.AveragePooling(8)
]))
urls = [
("https://upload.wikimedia.org/wikipedia/commons/thumb/4/43/"
"Sarcophilus_harrisii_taranna.jpg/"
"320px-Sarcophilus_harrisii_taranna.jpg"),
("https://upload.wikimedia.org/wikipedia/commons/thumb/b/ba/"
"Vincent_van_Gogh_-_Wheatfield_with_crows_-_Google_Art_Project.jpg/"
"320px-Vincent_van_Gogh_-_Wheatfield_with_crows_-_Google_Art_Project"
".jpg"),
("https://upload.wikimedia.org/wikipedia/commons/thumb/0/0c/"
"Galerella_sanguinea_Zoo_Praha_2011-2.jpg/207px-Galerella_sanguinea_"
"Zoo_Praha_2011-2.jpg"),
("https://upload.wikimedia.org/wikipedia/commons/thumb/9/96/"
"Ambrosius_Bosschaert_the_Elder_%28Dutch_-_Flower_Still_Life_-_"
"Google_Art_Project.jpg/307px-Ambrosius_Bosschaert_the_Elder_%28"
"Dutch_-_Flower_Still_Life_-_Google_Art_Project.jpg")
]
for url in urls:
img = imageio.imread(url)
ia.imshow(ia.draw_grid(aug(images=[img]*25), cols=5, rows=5))
ia.imshow(ia.draw_grid(aug2(images=[img]*25), cols=5, rows=5))
示例4: main
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import OneOf [as 别名]
def main():
aug = iaa.BlendAlphaMask(
iaa.SegMapClassIdsMaskGen(1),
iaa.OneOf([
iaa.TotalDropout(1.0),
iaa.AveragePooling(8)
])
)
aug2 = iaa.BlendAlphaSegMapClassIds(
1, iaa.OneOf([
iaa.TotalDropout(1.0),
iaa.AveragePooling(8)
])
)
image = ia.data.quokka(0.25)
segmap = ia.data.quokka_segmentation_map(0.25)
images_aug, segmaps_aug = aug(images=[image]*25,
segmentation_maps=[segmap]*25)
ia.imshow(ia.draw_grid(images_aug, cols=5, rows=5))
images_aug, segmaps_aug = aug2(images=[image]*25,
segmentation_maps=[segmap]*25)
ia.imshow(ia.draw_grid(images_aug, cols=5, rows=5))
示例5: chapter_augmenters_oneof
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import OneOf [as 别名]
def chapter_augmenters_oneof():
aug = iaa.OneOf([
iaa.Affine(rotate=45),
iaa.AdditiveGaussianNoise(scale=0.2*255),
iaa.Add(50, per_channel=True),
iaa.Sharpen(alpha=0.5)
])
run_and_save_augseq(
"oneof.jpg", aug,
[ia.quokka(size=(128, 128)) for _ in range(8)], cols=4, rows=2
)
示例6: train
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import OneOf [as 别名]
def train(model, dataset_dir, subset):
"""Train the model."""
# Training dataset.
dataset_train = NucleusDataset()
dataset_train.load_nucleus(dataset_dir, subset)
dataset_train.prepare()
# Validation dataset
dataset_val = NucleusDataset()
dataset_val.load_nucleus(dataset_dir, "val")
dataset_val.prepare()
# Image augmentation
# http://imgaug.readthedocs.io/en/latest/source/augmenters.html
augmentation = iaa.SomeOf((0, 2), [
iaa.Fliplr(0.5),
iaa.Flipud(0.5),
iaa.OneOf([iaa.Affine(rotate=90),
iaa.Affine(rotate=180),
iaa.Affine(rotate=270)]),
iaa.Multiply((0.8, 1.5)),
iaa.GaussianBlur(sigma=(0.0, 5.0))
])
# *** This training schedule is an example. Update to your needs ***
# If starting from imagenet, train heads only for a bit
# since they have random weights
print("Train network heads")
model.train(dataset_train, dataset_val,
learning_rate=config.LEARNING_RATE,
epochs=20,
augmentation=augmentation,
layers='heads')
print("Train all layers")
model.train(dataset_train, dataset_val,
learning_rate=config.LEARNING_RATE,
epochs=40,
augmentation=augmentation,
layers='all')
############################################################
# RLE Encoding
############################################################
示例7: __getitem__
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import OneOf [as 别名]
def __getitem__(self, item):
if not self.aug:
uuid = self.list[item]
else:
uuid = self.list[item // test_aug_sz]
colors = ['red', 'green', 'blue', 'yellow']
flags = cv2.IMREAD_GRAYSCALE
img = [cv2.imread(os.path.join(self.default_path, uuid + '_' + color + self.ext), flags) for color in colors]
if self.resize:
img = [cv2.resize(x, (1024, 1024)) for x in img]
img = np.stack(img, axis=-1)
# TODO : data augmentation zoom/shear/brightness
if 'train' in self.setname:
augment_img = iaa.Sequential([
iaa.OneOf([
iaa.Affine(rotate=0),
iaa.Affine(rotate=90),
iaa.Affine(rotate=180),
iaa.Affine(rotate=270),
iaa.Fliplr(0.5),
iaa.Flipud(0.5),
])
], random_order=True)
img = augment_img.augment_image(img)
# cutout
if C.get()['cutout_p'] > 0.0:
img = cutout(C.get()['cutout_size'], C.get()['cutout_p'], False)(img)
# TODO : channel drop(except green)?
# d_ch = random.choice([0, 2, 3])
# img[:, :, d_ch] = 0
if self.aug:
# teat-time aug. : tta
tta_list = list(itertools.product(
[iaa.Affine(rotate=0), iaa.Affine(rotate=90), iaa.Affine(rotate=180), iaa.Affine(rotate=270)],
[iaa.Fliplr(0.0), iaa.Fliplr(1.0), iaa.Flipud(1.0), iaa.Sequential([iaa.Fliplr(1.0), iaa.Flipud(1.0)])]
))
tta_idx = item % len(tta_list)
img = tta_list[tta_idx][0].augment_image(img)
img = tta_list[tta_idx][1].augment_image(img)
img = img.astype(np.float32)
img /= 255. # TODO : different normalization?
img = np.transpose(img, (2, 0, 1))
img = np.ascontiguousarray(img)
if self.setname == 'tests':
lb = np.zeros(len(name_label_dict), dtype=np.int)
else:
lb = [int(x) for x in self.labels.loc[uuid]['Target'].split()]
lb = np.eye(len(name_label_dict), dtype=np.float)[lb].sum(axis=0)
return img, lb
示例8: _create_augment_pipeline
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import OneOf [as 别名]
def _create_augment_pipeline():
from imgaug import augmenters as iaa
### augmentors by https://github.com/aleju/imgaug
sometimes = lambda aug: iaa.Sometimes(0.5, aug)
# Define our sequence of augmentation steps that will be applied to every image
# All augmenters with per_channel=0.5 will sample one value _per image_
# in 50% of all cases. In all other cases they will sample new values
# _per channel_.
aug_pipe = iaa.Sequential(
[
# apply the following augmenters to most images
#iaa.Fliplr(0.5), # horizontally flip 50% of all images
#iaa.Flipud(0.2), # vertically flip 20% of all images
#sometimes(iaa.Crop(percent=(0, 0.1))), # crop images by 0-10% of their height/width
sometimes(iaa.Affine(
#scale={"x": (0.8, 1.2), "y": (0.8, 1.2)}, # scale images to 80-120% of their size, individually per axis
#translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)}, # translate by -20 to +20 percent (per axis)
#rotate=(-5, 5), # rotate by -45 to +45 degrees
#shear=(-5, 5), # shear by -16 to +16 degrees
#order=[0, 1], # use nearest neighbour or bilinear interpolation (fast)
#cval=(0, 255), # if mode is constant, use a cval between 0 and 255
#mode=ia.ALL # use any of scikit-image's warping modes (see 2nd image from the top for examples)
)),
# execute 0 to 5 of the following (less important) augmenters per image
# don't execute all of them, as that would often be way too strong
iaa.SomeOf((0, 5),
[
#sometimes(iaa.Superpixels(p_replace=(0, 1.0), n_segments=(20, 200))), # convert images into their superpixel representation
iaa.OneOf([
iaa.GaussianBlur((0, 3.0)), # blur images with a sigma between 0 and 3.0
iaa.AverageBlur(k=(2, 7)), # blur image using local means with kernel sizes between 2 and 7
iaa.MedianBlur(k=(3, 11)), # blur image using local medians with kernel sizes between 2 and 7
]),
iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)), # sharpen images
#iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)), # emboss images
# search either for all edges or for directed edges
#sometimes(iaa.OneOf([
# iaa.EdgeDetect(alpha=(0, 0.7)),
# iaa.DirectedEdgeDetect(alpha=(0, 0.7), direction=(0.0, 1.0)),
#])),
iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5), # add gaussian noise to images
iaa.OneOf([
iaa.Dropout((0.01, 0.1), per_channel=0.5), # randomly remove up to 10% of the pixels
#iaa.CoarseDropout((0.03, 0.15), size_percent=(0.02, 0.05), per_channel=0.2),
]),
#iaa.Invert(0.05, per_channel=True), # invert color channels
iaa.Add((-10, 10), per_channel=0.5), # change brightness of images (by -10 to 10 of original value)
iaa.Multiply((0.5, 1.5), per_channel=0.5), # change brightness of images (50-150% of original value)
iaa.ContrastNormalization((0.5, 2.0), per_channel=0.5), # improve or worsen the contrast
#iaa.Grayscale(alpha=(0.0, 1.0)),
#sometimes(iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25)), # move pixels locally around (with random strengths)
#sometimes(iaa.PiecewiseAffine(scale=(0.01, 0.05))) # sometimes move parts of the image around
],
random_order=True
)
],
random_order=True
)
return aug_pipe
示例9: heavy_aug_on_fly
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import OneOf [as 别名]
def heavy_aug_on_fly(img, det_mask):
"""Do augmentation with different combination on each training batch
"""
def image_heavy_augmentation(image, det_masks, ratio_operations=0.6):
# according to the paper, operations such as shearing, fliping horizontal/vertical,
# rotating, zooming and channel shifting will be apply
sometimes = lambda aug: iaa.Sometimes(ratio_operations, aug)
edge_detect_sometime = lambda aug: iaa.Sometimes(0.1, aug)
elasitic_sometime = lambda aug:iaa.Sometimes(0.2, aug)
add_gauss_noise = lambda aug: iaa.Sometimes(0.15, aug)
hor_flip_angle = np.random.uniform(0, 1)
ver_flip_angle = np.random.uniform(0, 1)
seq = iaa.Sequential([
iaa.SomeOf((0, 5), [
iaa.Fliplr(hor_flip_angle),
iaa.Flipud(ver_flip_angle),
iaa.Affine(shear=(-16, 16)),
iaa.Affine(scale={'x': (1, 1.6), 'y': (1, 1.6)}),
iaa.PerspectiveTransform(scale=(0.01, 0.1)),
# These are additional augmentation.
#iaa.ContrastNormalization((0.75, 1.5))
]),
edge_detect_sometime(iaa.OneOf([
iaa.EdgeDetect(alpha=(0, 0.7)),
iaa.DirectedEdgeDetect(alpha=(0,0.7), direction=(0.0, 1.0)
)
])),
add_gauss_noise(iaa.AdditiveGaussianNoise(loc=0,
scale=(0.0, 0.05*255),
per_channel=0.5)
),
iaa.Sometimes(0.3,
iaa.GaussianBlur(sigma=(0, 0.5))
),
elasitic_sometime(
iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25))
])
seq_to_deterministic = seq.to_deterministic()
aug_img = seq_to_deterministic.augment_images(image)
aug_det_mask = seq_to_deterministic.augment_images(det_masks)
return aug_img, aug_det_mask
aug_image, aug_det_mask = image_heavy_augmentation(image=img, det_masks=det_mask)
return aug_image, aug_det_mask
示例10: get_augmentations
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import OneOf [as 别名]
def get_augmentations():
# applies the given augmenter in 50% of all cases,
sometimes = lambda aug: iaa.Sometimes(0.5, aug)
# Define our sequence of augmentation steps that will be applied to every image
seq = iaa.Sequential([
# execute 0 to 5 of the following (less important) augmenters per image
iaa.SomeOf((0, 5),
[
iaa.OneOf([
iaa.GaussianBlur((0, 3.0)),
iaa.AverageBlur(k=(2, 7)),
iaa.MedianBlur(k=(3, 11)),
]),
iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)),
iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)),
# search either for all edges or for directed edges,
# blend the result with the original image using a blobby mask
iaa.SimplexNoiseAlpha(iaa.OneOf([
iaa.EdgeDetect(alpha=(0.5, 1.0)),
iaa.DirectedEdgeDetect(alpha=(0.5, 1.0), direction=(0.0, 1.0)),
])),
iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5),
iaa.OneOf([
iaa.Dropout((0.01, 0.1), per_channel=0.5), # randomly remove up to 10% of the pixels
iaa.CoarseDropout((0.03, 0.15), size_percent=(0.02, 0.05), per_channel=0.2),
]),
iaa.Add((-10, 10), per_channel=0.5), # change brightness of images (by -10 to 10 of original value)
iaa.AddToHueAndSaturation((-20, 20)), # change hue and saturation
# either change the brightness of the whole image (sometimes
# per channel) or change the brightness of subareas
iaa.OneOf([
iaa.Multiply((0.5, 1.5), per_channel=0.5),
iaa.FrequencyNoiseAlpha(
exponent=(-4, 0),
first=iaa.Multiply((0.5, 1.5), per_channel=True),
second=iaa.ContrastNormalization((0.5, 2.0))
)
]),
iaa.ContrastNormalization((0.5, 2.0), per_channel=0.5), # improve or worsen the contrast
sometimes(iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25)), # move pixels locally around (with random strengths)
],
random_order=True
)
],
random_order=True
)
return seq
### data transforms