本文整理汇总了Python中imgaug.augmenters.GaussianBlur方法的典型用法代码示例。如果您正苦于以下问题:Python augmenters.GaussianBlur方法的具体用法?Python augmenters.GaussianBlur怎么用?Python augmenters.GaussianBlur使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类imgaug.augmenters
的用法示例。
在下文中一共展示了augmenters.GaussianBlur方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _load_augmentation_aug_non_geometric
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import GaussianBlur [as 别名]
def _load_augmentation_aug_non_geometric():
return iaa.Sequential([
iaa.Sometimes(0.3, iaa.Multiply((0.5, 1.5), per_channel=0.5)),
iaa.Sometimes(0.2, iaa.JpegCompression(compression=(70, 99))),
iaa.Sometimes(0.2, iaa.GaussianBlur(sigma=(0, 3.0))),
iaa.Sometimes(0.2, iaa.MotionBlur(k=15, angle=[-45, 45])),
iaa.Sometimes(0.2, iaa.MultiplyHue((0.5, 1.5))),
iaa.Sometimes(0.2, iaa.MultiplySaturation((0.5, 1.5))),
iaa.Sometimes(0.34, iaa.MultiplyHueAndSaturation((0.5, 1.5),
per_channel=True)),
iaa.Sometimes(0.34, iaa.Grayscale(alpha=(0.0, 1.0))),
iaa.Sometimes(0.2, iaa.ChangeColorTemperature((1100, 10000))),
iaa.Sometimes(0.1, iaa.GammaContrast((0.5, 2.0))),
iaa.Sometimes(0.2, iaa.SigmoidContrast(gain=(3, 10),
cutoff=(0.4, 0.6))),
iaa.Sometimes(0.1, iaa.CLAHE()),
iaa.Sometimes(0.1, iaa.HistogramEqualization()),
iaa.Sometimes(0.2, iaa.LinearContrast((0.5, 2.0), per_channel=0.5)),
iaa.Sometimes(0.1, iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)))
])
示例2: example_augment_images_and_heatmaps
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import GaussianBlur [as 别名]
def example_augment_images_and_heatmaps():
print("Example: Augment Images and Heatmaps")
import numpy as np
import imgaug.augmenters as iaa
# Standard scenario: You have N RGB-images and additionally 21 heatmaps per
# image. You want to augment each image and its heatmaps identically.
images = np.random.randint(0, 255, (16, 128, 128, 3), dtype=np.uint8)
heatmaps = np.random.random(size=(16, 64, 64, 1)).astype(np.float32)
seq = iaa.Sequential([
iaa.GaussianBlur((0, 3.0)),
iaa.Affine(translate_px={"x": (-40, 40)}),
iaa.Crop(px=(0, 10))
])
images_aug, heatmaps_aug = seq(images=images, heatmaps=heatmaps)
示例3: example_augment_images_and_segmentation_maps
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import GaussianBlur [as 别名]
def example_augment_images_and_segmentation_maps():
print("Example: Augment Images and Segmentation Maps")
import numpy as np
import imgaug.augmenters as iaa
# Standard scenario: You have N=16 RGB-images and additionally one segmentation
# map per image. You want to augment each image and its heatmaps identically.
images = np.random.randint(0, 255, (16, 128, 128, 3), dtype=np.uint8)
segmaps = np.random.randint(0, 10, size=(16, 64, 64, 1), dtype=np.int32)
seq = iaa.Sequential([
iaa.GaussianBlur((0, 3.0)),
iaa.Affine(translate_px={"x": (-40, 40)}),
iaa.Crop(px=(0, 10))
])
images_aug, segmaps_aug = seq(images=images, segmentation_maps=segmaps)
示例4: test_backends_called
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import GaussianBlur [as 别名]
def test_backends_called(self):
def side_effect_cv2(image, ksize, sigmaX, sigmaY, borderType):
return image + 1
def side_effect_scipy(image, sigma, mode):
return image + 1
mock_GaussianBlur = mock.Mock(side_effect=side_effect_cv2)
mock_gaussian_filter = mock.Mock(side_effect=side_effect_scipy)
image = np.arange(4*4).astype(np.uint8).reshape((4, 4))
with mock.patch('cv2.GaussianBlur', mock_GaussianBlur):
_observed = iaa.blur_gaussian_(
np.copy(image), sigma=1.0, eps=0, backend="cv2")
assert mock_GaussianBlur.call_count == 1
with mock.patch('scipy.ndimage.gaussian_filter', mock_gaussian_filter):
_observed = iaa.blur_gaussian_(
np.copy(image), sigma=1.0, eps=0, backend="scipy")
assert mock_gaussian_filter.call_count == 1
示例5: __init__
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import GaussianBlur [as 别名]
def __init__(self):
self.seq = iaa.Sequential([
iaa.Sometimes(0.5, iaa.OneOf([
iaa.GaussianBlur((0, 3.0)), # blur images with a sigma between 0 and 3.0
iaa.AverageBlur(k=(2, 7)), # blur image using local means with kernel sizes between 2 and 7
iaa.MedianBlur(k=(3, 11)), # blur image using local medians with kernel sizes between 2 and 7
])),
iaa.Sometimes(0.5, iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05 * 255), per_channel=0.5)),
iaa.Sometimes(0.5, iaa.Add((-10, 10), per_channel=0.5)),
iaa.Sometimes(0.5, iaa.AddToHueAndSaturation((-20, 20))),
iaa.Sometimes(0.5, iaa.FrequencyNoiseAlpha(
exponent=(-4, 0),
first=iaa.Multiply((0.5, 1.5), per_channel=True),
second=iaa.LinearContrast((0.5, 2.0))
)),
iaa.Sometimes(0.5, iaa.PiecewiseAffine(scale=(0.01, 0.05))),
iaa.Sometimes(0.5, iaa.PerspectiveTransform(scale=(0.01, 0.1)))
], random_order=True)
示例6: create_augmenter
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import GaussianBlur [as 别名]
def create_augmenter(stage: str = "train"):
if stage == "train":
return iaa.Sequential([
iaa.Fliplr(0.5),
iaa.CropAndPad(px=(0, 112), sample_independently=False),
iaa.Affine(translate_percent={"x": (-0.4, 0.4), "y": (-0.4, 0.4)}),
iaa.SomeOf((0, 3), [
iaa.AddToHueAndSaturation((-10, 10)),
iaa.Affine(scale={"x": (0.9, 1.1), "y": (0.9, 1.1)}),
iaa.GaussianBlur(sigma=(0, 1.0)),
iaa.AdditiveGaussianNoise(scale=0.05 * 255)
])
])
elif stage == "val":
return iaa.Sequential([
iaa.CropAndPad(px=(0, 112), sample_independently=False),
iaa.Affine(translate_percent={"x": (-0.4, 0.4), "y": (-0.4, 0.4)}),
])
elif stage == "test":
return iaa.Sequential([])
示例7: init_augmentations
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import GaussianBlur [as 别名]
def init_augmentations(self):
if self.transform_probability > 0 and self.use_imgaug:
augmentations = iaa.Sometimes(
self.transform_probability,
iaa.Sequential([
iaa.SomeOf(
(1, None),
[
iaa.AddToHueAndSaturation(iap.Uniform(-20, 20), per_channel=True),
iaa.GaussianBlur(sigma=(0, 1.0)),
iaa.LinearContrast((0.75, 1.0)),
iaa.PiecewiseAffine(scale=(0.01, 0.02), mode='edge'),
],
random_order=True
),
iaa.Resize(
{"height": (16, self.image_size.height), "width": "keep-aspect-ratio"},
interpolation=imgaug.ALL
),
])
)
else:
augmentations = None
return augmentations
示例8: amaugimg
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import GaussianBlur [as 别名]
def amaugimg(image):
#数据增强
image = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)
seq = iaa.Sequential([
# iaa.Affine(rotate=(-5, 5),
# shear=(-5, 5),
# mode='edge'),
iaa.SomeOf((0, 2), #选择数据增强
[
iaa.GaussianBlur((0, 1.5)),
iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.01 * 255), per_channel=0.5),
# iaa.AddToHueAndSaturation((-5, 5)), # change hue and saturation
iaa.PiecewiseAffine(scale=(0.01, 0.03)),
iaa.PerspectiveTransform(scale=(0.01, 0.1))
],
random_order=True
)
])
image = seq.augment_image(image)
image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
return image
示例9: chapter_augmenters_sometimes
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import GaussianBlur [as 别名]
def chapter_augmenters_sometimes():
aug = iaa.Sometimes(0.5, iaa.GaussianBlur(sigma=2.0))
run_and_save_augseq(
"sometimes.jpg", aug,
[ia.quokka(size=(64, 64)) for _ in range(16)], cols=8, rows=2,
seed=2
)
aug = iaa.Sometimes(
0.5,
iaa.GaussianBlur(sigma=2.0),
iaa.Sequential([iaa.Affine(rotate=45), iaa.Sharpen(alpha=1.0)])
)
run_and_save_augseq(
"sometimes_if_else.jpg", aug,
[ia.quokka(size=(64, 64)) for _ in range(16)], cols=8, rows=2
)
示例10: example_show
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import GaussianBlur [as 别名]
def example_show():
print("Example: Show")
from imgaug import augmenters as iaa
images = np.random.randint(0, 255, (16, 128, 128, 3), dtype=np.uint8)
seq = iaa.Sequential([iaa.Fliplr(0.5), iaa.GaussianBlur((0, 3.0))])
# show an image with 8*8 augmented versions of image 0
seq.show_grid(images[0], cols=8, rows=8)
# Show an image with 8*8 augmented versions of image 0 and 8*8 augmented
# versions of image 1. The identical augmentations will be applied to
# image 0 and 1.
seq.show_grid([images[0], images[1]], cols=8, rows=8)
# this example is no longer necessary as the library can now handle 2D images
示例11: example_single_augmenters
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import GaussianBlur [as 别名]
def example_single_augmenters():
print("Example: Single Augmenters")
from imgaug import augmenters as iaa
images = np.random.randint(0, 255, (16, 128, 128, 3), dtype=np.uint8)
flipper = iaa.Fliplr(1.0) # always horizontally flip each input image
images[0] = flipper.augment_image(images[0]) # horizontally flip image 0
vflipper = iaa.Flipud(0.9) # vertically flip each input image with 90% probability
images[1] = vflipper.augment_image(images[1]) # probably vertically flip image 1
blurer = iaa.GaussianBlur(3.0)
images[2] = blurer.augment_image(images[2]) # blur image 2 by a sigma of 3.0
images[3] = blurer.augment_image(images[3]) # blur image 3 by a sigma of 3.0 too
translater = iaa.Affine(translate_px={"x": -16}) # move each input image by 16px to the left
images[4] = translater.augment_image(images[4]) # move image 4 to the left
scaler = iaa.Affine(scale={"y": (0.8, 1.2)}) # scale each input image to 80-120% on the y axis
images[5] = scaler.augment_image(images[5]) # scale image 5 by 80-120% on the y axis
示例12: __init__
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import GaussianBlur [as 别名]
def __init__(self,data_dir, back_dir,
batch_size=50,gan=True,imsize=128,
res_x=640,res_y=480,
**kwargs):
'''
data_dir: Folder that contains cropped image+xyz
back_dir: Folder that contains random background images
batch_size: batch size for training
gan: if False, gt for GAN is not yielded
'''
self.data_dir = data_dir
self.back_dir = back_dir
self.imsize=imsize
self.batch_size = batch_size
self.gan = gan
self.backfiles = os.listdir(back_dir)
data_list = os.listdir(data_dir)
self.datafiles=[]
self.res_x=res_x
self.res_y=res_y
for file in data_list:
if(file.endswith(".npy")):
self.datafiles.append(file)
self.n_data = len(self.datafiles)
self.n_background = len(self.backfiles)
print("Total training views:", self.n_data)
self.seq_syn= iaa.Sequential([
iaa.WithChannels(0, iaa.Add((-15, 15))),
iaa.WithChannels(1, iaa.Add((-15, 15))),
iaa.WithChannels(2, iaa.Add((-15, 15))),
iaa.ContrastNormalization((0.8, 1.3)),
iaa.Multiply((0.8, 1.2),per_channel=0.5),
iaa.GaussianBlur(sigma=(0.0, 0.5)),
iaa.Sometimes(0.1, iaa.AdditiveGaussianNoise(scale=10, per_channel=True)),
iaa.Sometimes(0.5, iaa.ContrastNormalization((0.5, 2.2), per_channel=0.3)),
], random_order=True)
示例13: example_simple_training_setting
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import GaussianBlur [as 别名]
def example_simple_training_setting():
print("Example: Simple Training Setting")
import numpy as np
import imgaug.augmenters as iaa
def load_batch(batch_idx):
# dummy function, implement this
# Return a numpy array of shape (N, height, width, #channels)
# or a list of (height, width, #channels) arrays (may have different image
# sizes).
# Images should be in RGB for colorspace augmentations.
# (cv2.imread() returns BGR!)
# Images should usually be in uint8 with values from 0-255.
return np.zeros((128, 32, 32, 3), dtype=np.uint8) + (batch_idx % 255)
def train_on_images(images):
# dummy function, implement this
pass
# Pipeline:
# (1) Crop images from each side by 1-16px, do not resize the results
# images back to the input size. Keep them at the cropped size.
# (2) Horizontally flip 50% of the images.
# (3) Blur images using a gaussian kernel with sigma between 0.0 and 3.0.
seq = iaa.Sequential([
iaa.Crop(px=(1, 16), keep_size=False),
iaa.Fliplr(0.5),
iaa.GaussianBlur(sigma=(0, 3.0))
])
for batch_idx in range(100):
images = load_batch(batch_idx)
images_aug = seq(images=images) # done by the library
train_on_images(images_aug)
# -----
# Make sure that the example really does something
if batch_idx == 0:
assert not np.array_equal(images, images_aug)
示例14: example_visualize_augmented_images
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import GaussianBlur [as 别名]
def example_visualize_augmented_images():
print("Example: Visualize Augmented Images")
import numpy as np
import imgaug.augmenters as iaa
images = np.random.randint(0, 255, (16, 128, 128, 3), dtype=np.uint8)
seq = iaa.Sequential([iaa.Fliplr(0.5), iaa.GaussianBlur((0, 3.0))])
# Show an image with 8*8 augmented versions of image 0 and 8*8 augmented
# versions of image 1. Identical augmentations will be applied to
# image 0 and 1.
seq.show_grid([images[0], images[1]], cols=8, rows=8)
示例15: example_using_augmenters_only_once
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import GaussianBlur [as 别名]
def example_using_augmenters_only_once():
print("Example: Using Augmenters Only Once")
from imgaug import augmenters as iaa
import numpy as np
images = np.random.randint(0, 255, (16, 128, 128, 3), dtype=np.uint8)
# always horizontally flip each input image
images_aug = iaa.Fliplr(1.0)(images=images)
# vertically flip each input image with 90% probability
images_aug = iaa.Flipud(0.9)(images=images)
# blur 50% of all images using a gaussian kernel with a sigma of 3.0
images_aug = iaa.Sometimes(0.5, iaa.GaussianBlur(3.0))(images=images)