本文整理汇总了Python中imgaug.augmenters.Fliplr方法的典型用法代码示例。如果您正苦于以下问题:Python augmenters.Fliplr方法的具体用法?Python augmenters.Fliplr怎么用?Python augmenters.Fliplr使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类imgaug.augmenters
的用法示例。
在下文中一共展示了augmenters.Fliplr方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import Fliplr [as 别名]
def __init__(self, dataset_path,scale,k_fold_test=1, mode='train'):
super().__init__()
self.mode = mode
self.img_path=dataset_path+'/img'
self.mask_path=dataset_path+'/mask'
self.image_lists,self.label_lists=self.read_list(self.img_path,k_fold_test=k_fold_test)
self.flip =iaa.SomeOf((2,4),[
iaa.Fliplr(0.5),
iaa.Flipud(0.5),
iaa.Affine(rotate=(-30, 30)),
iaa.AdditiveGaussianNoise(scale=(0.0,0.08*255))], random_order=True)
# resize
self.resize_label = transforms.Resize(scale, Image.NEAREST)
self.resize_img = transforms.Resize(scale, Image.BILINEAR)
# normalization
self.to_tensor = transforms.ToTensor()
示例2: main
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import Fliplr [as 别名]
def main():
img = data.astronaut()
img = ia.imresize_single_image(img, (64, 64))
aug = iaa.Fliplr(0.5)
unseeded1 = aug.draw_grid(img, cols=8, rows=1)
unseeded2 = aug.draw_grid(img, cols=8, rows=1)
iarandom.seed(1000)
seeded1 = aug.draw_grid(img, cols=8, rows=1)
seeded2 = aug.draw_grid(img, cols=8, rows=1)
iarandom.seed(1000)
reseeded1 = aug.draw_grid(img, cols=8, rows=1)
reseeded2 = aug.draw_grid(img, cols=8, rows=1)
iarandom.seed(1001)
reseeded3 = aug.draw_grid(img, cols=8, rows=1)
reseeded4 = aug.draw_grid(img, cols=8, rows=1)
all_rows = np.vstack([unseeded1, unseeded2, seeded1, seeded2, reseeded1, reseeded2, reseeded3, reseeded4])
ia.imshow(all_rows)
示例3: __init__
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import Fliplr [as 别名]
def __init__(self, augmentation_rate):
self.augs = iaa.Sometimes(
augmentation_rate,
iaa.SomeOf(
(4, 7),
[
iaa.Affine(rotate=(-10, 10)),
iaa.Fliplr(0.2),
iaa.AverageBlur(k=(2, 10)),
iaa.Add((-10, 10), per_channel=0.5),
iaa.Multiply((0.75, 1.25), per_channel=0.5),
iaa.ContrastNormalization((0.5, 2.0), per_channel=0.5),
iaa.Crop(px=(0, 20))
],
random_order=True
)
)
示例4: img_aug
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import Fliplr [as 别名]
def img_aug(img, mask):
mask = np.where(mask > 0, 0, 255).astype(np.uint8)
flipper = iaa.Fliplr(0.5).to_deterministic()
mask = flipper.augment_image(mask)
img = flipper.augment_image(img)
vflipper = iaa.Flipud(0.5).to_deterministic()
img = vflipper.augment_image(img)
mask = vflipper.augment_image(mask)
if random.random() < 0.5:
rot_time = random.choice([1, 2, 3])
for i in range(rot_time):
img = np.rot90(img)
mask = np.rot90(mask)
if random.random() < 0.5:
translater = iaa.Affine(translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)},
scale={"x": (0.8, 1.2), "y": (0.8, 1.2)},
shear=(-8, 8),
cval=(255)
).to_deterministic()
img = translater.augment_image(img)
mask = translater.augment_image(mask)
# if random.random() < 0.5:
# img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
mask = np.where(mask > 0, 0, 255).astype(np.uint8)
return img, mask
示例5: create_augmenter
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import Fliplr [as 别名]
def create_augmenter(stage: str = "train"):
if stage == "train":
return iaa.Sequential([
iaa.Fliplr(0.5),
iaa.CropAndPad(px=(0, 112), sample_independently=False),
iaa.Affine(translate_percent={"x": (-0.4, 0.4), "y": (-0.4, 0.4)}),
iaa.SomeOf((0, 3), [
iaa.AddToHueAndSaturation((-10, 10)),
iaa.Affine(scale={"x": (0.9, 1.1), "y": (0.9, 1.1)}),
iaa.GaussianBlur(sigma=(0, 1.0)),
iaa.AdditiveGaussianNoise(scale=0.05 * 255)
])
])
elif stage == "val":
return iaa.Sequential([
iaa.CropAndPad(px=(0, 112), sample_independently=False),
iaa.Affine(translate_percent={"x": (-0.4, 0.4), "y": (-0.4, 0.4)}),
])
elif stage == "test":
return iaa.Sequential([])
示例6: augment_flip
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import Fliplr [as 别名]
def augment_flip(image, bbox):
aug = iaa.Sequential([iaa.Fliplr(1.0)])
bbs = ia.BoundingBoxesOnImage([
ia.BoundingBox(x1=bbox[0], y1=bbox[1], x2=bbox[2], y2=bbox[3])], shape=image.shape)
aug = aug.to_deterministic()
image_aug = aug.augment_image(image)
image_aug = image_aug.copy()
bbs_aug = aug.augment_bounding_boxes([bbs])[0]
b = bbs_aug.bounding_boxes
bbs_aug = [b[0].x1, b[0].y1, b[0].x2, b[0].y2]
bbs_aug = np.asarray(bbs_aug)
bbs_aug[0] = bbs_aug[0] if bbs_aug[0] > 0 else 0
bbs_aug[1] = bbs_aug[1] if bbs_aug[1] > 0 else 0
bbs_aug[2] = bbs_aug[2] if bbs_aug[2] < size else size
bbs_aug[3] = bbs_aug[3] if bbs_aug[3] < size else size
return image_aug, bbs_aug
示例7: flip
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import Fliplr [as 别名]
def flip(image, bbox):
aug = iaa.Sequential([iaa.Fliplr(1.0)])
bbs = ia.BoundingBoxesOnImage([
ia.BoundingBox(x1=bbox[0], y1=bbox[1], x2=bbox[2], y2=bbox[3])], shape=image.shape)
aug = aug.to_deterministic()
image_aug = aug.augment_image(image)
image_aug = image_aug.copy()
bbs_aug = aug.augment_bounding_boxes([bbs])[0]
b = bbs_aug.bounding_boxes
bbs_aug = [b[0].x1, b[0].y1, b[0].x2, b[0].y2]
bbs_aug = np.asarray(bbs_aug)
bbs_aug[0] = bbs_aug[0] if bbs_aug[0] > 0 else 0
bbs_aug[1] = bbs_aug[1] if bbs_aug[1] > 0 else 0
bbs_aug[2] = bbs_aug[2] if bbs_aug[2] < size else size
bbs_aug[3] = bbs_aug[3] if bbs_aug[3] < size else size
return image_aug, bbs_aug
示例8: main
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import Fliplr [as 别名]
def main():
img = data.astronaut()
img = misc.imresize(img, (64, 64))
aug = iaa.Fliplr(0.5)
unseeded1 = aug.draw_grid(img, cols=8, rows=1)
unseeded2 = aug.draw_grid(img, cols=8, rows=1)
ia.seed(1000)
seeded1 = aug.draw_grid(img, cols=8, rows=1)
seeded2 = aug.draw_grid(img, cols=8, rows=1)
ia.seed(1000)
reseeded1 = aug.draw_grid(img, cols=8, rows=1)
reseeded2 = aug.draw_grid(img, cols=8, rows=1)
ia.seed(1001)
reseeded3 = aug.draw_grid(img, cols=8, rows=1)
reseeded4 = aug.draw_grid(img, cols=8, rows=1)
all_rows = np.vstack([unseeded1, unseeded2, seeded1, seeded2, reseeded1, reseeded2, reseeded3, reseeded4])
misc.imshow(all_rows)
示例9: example_show
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import Fliplr [as 别名]
def example_show():
print("Example: Show")
from imgaug import augmenters as iaa
images = np.random.randint(0, 255, (16, 128, 128, 3), dtype=np.uint8)
seq = iaa.Sequential([iaa.Fliplr(0.5), iaa.GaussianBlur((0, 3.0))])
# show an image with 8*8 augmented versions of image 0
seq.show_grid(images[0], cols=8, rows=8)
# Show an image with 8*8 augmented versions of image 0 and 8*8 augmented
# versions of image 1. The identical augmentations will be applied to
# image 0 and 1.
seq.show_grid([images[0], images[1]], cols=8, rows=8)
# this example is no longer necessary as the library can now handle 2D images
示例10: example_single_augmenters
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import Fliplr [as 别名]
def example_single_augmenters():
print("Example: Single Augmenters")
from imgaug import augmenters as iaa
images = np.random.randint(0, 255, (16, 128, 128, 3), dtype=np.uint8)
flipper = iaa.Fliplr(1.0) # always horizontally flip each input image
images[0] = flipper.augment_image(images[0]) # horizontally flip image 0
vflipper = iaa.Flipud(0.9) # vertically flip each input image with 90% probability
images[1] = vflipper.augment_image(images[1]) # probably vertically flip image 1
blurer = iaa.GaussianBlur(3.0)
images[2] = blurer.augment_image(images[2]) # blur image 2 by a sigma of 3.0
images[3] = blurer.augment_image(images[3]) # blur image 3 by a sigma of 3.0 too
translater = iaa.Affine(translate_px={"x": -16}) # move each input image by 16px to the left
images[4] = translater.augment_image(images[4]) # move image 4 to the left
scaler = iaa.Affine(scale={"y": (0.8, 1.2)}) # scale each input image to 80-120% on the y axis
images[5] = scaler.augment_image(images[5]) # scale image 5 by 80-120% on the y axis
示例11: _rectify_augmenter
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import Fliplr [as 别名]
def _rectify_augmenter(self, augment):
import netharn as nh
if augment is True:
augment = 'simple'
if not augment:
augmenter = None
elif augment == 'simple':
augmenter = iaa.Sequential([
iaa.Crop(percent=(0, .2)),
iaa.Fliplr(p=.5)
])
elif augment == 'complex':
augmenter = iaa.Sequential([
iaa.Sometimes(0.2, nh.data.transforms.HSVShift(hue=0.1, sat=1.5, val=1.5)),
iaa.Crop(percent=(0, .2)),
iaa.Fliplr(p=.5)
])
else:
raise KeyError('Unknown augmentation {!r}'.format(augment))
return augmenter
示例12: _rectify_augmenter
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import Fliplr [as 别名]
def _rectify_augmenter(self, augmenter):
import netharn as nh
if augmenter is True:
augmenter = 'simple'
if not augmenter:
augmenter = None
elif augmenter == 'simple':
augmenter = iaa.Sequential([
iaa.Crop(percent=(0, .2)),
iaa.Fliplr(p=.5)
])
elif augmenter == 'complex':
augmenter = iaa.Sequential([
iaa.Sometimes(0.2, nh.data.transforms.HSVShift(hue=0.1, sat=1.5, val=1.5)),
iaa.Crop(percent=(0, .2)),
iaa.Fliplr(p=.5)
])
else:
raise KeyError('Unknown augmentation {!r}'.format(self.augment))
return augmenter
示例13: _load_augmentation_aug_geometric
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import Fliplr [as 别名]
def _load_augmentation_aug_geometric():
return iaa.OneOf([
iaa.Sequential([iaa.Fliplr(0.5), iaa.Flipud(0.2)]),
iaa.CropAndPad(percent=(-0.05, 0.1),
pad_mode='constant',
pad_cval=(0, 255)),
iaa.Crop(percent=(0.0, 0.1)),
iaa.Crop(percent=(0.3, 0.5)),
iaa.Crop(percent=(0.3, 0.5)),
iaa.Crop(percent=(0.3, 0.5)),
iaa.Sequential([
iaa.Affine(
# scale images to 80-120% of their size,
# individually per axis
scale={"x": (0.8, 1.2), "y": (0.8, 1.2)},
# translate by -20 to +20 percent (per axis)
translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)},
rotate=(-45, 45), # rotate by -45 to +45 degrees
shear=(-16, 16), # shear by -16 to +16 degrees
# use nearest neighbour or bilinear interpolation (fast)
order=[0, 1],
# if mode is constant, use a cval between 0 and 255
mode='constant',
cval=(0, 255),
# use any of scikit-image's warping modes
# (see 2nd image from the top for examples)
),
iaa.Sometimes(0.3, iaa.Crop(percent=(0.3, 0.5)))])
])
示例14: main
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import Fliplr [as 别名]
def main():
image = data.astronaut()
print("image shape:", image.shape)
print("Press ENTER or wait %d ms to proceed to the next image." % (TIME_PER_STEP,))
children_all = [
("hflip", iaa.Fliplr(1)),
("add", iaa.Add(50)),
("dropout", iaa.Dropout(0.2)),
("affine", iaa.Affine(rotate=35))
]
channels_all = [
None,
0,
[],
[0],
[0, 1],
[1, 2],
[0, 1, 2]
]
cv2.namedWindow("aug", cv2.WINDOW_NORMAL)
cv2.imshow("aug", image[..., ::-1])
cv2.waitKey(TIME_PER_STEP)
for children_title, children in children_all:
for channels in channels_all:
aug = iaa.WithChannels(channels=channels, children=children)
img_aug = aug.augment_image(image)
print("dtype", img_aug.dtype, "averages", np.average(img_aug, axis=tuple(range(0, img_aug.ndim-1))))
title = "children=%s | channels=%s" % (children_title, channels)
img_aug = ia.draw_text(img_aug, x=5, y=5, text=title)
cv2.imshow("aug", img_aug[..., ::-1]) # here with rgb2bgr
cv2.waitKey(TIME_PER_STEP)
示例15: example_simple_training_setting
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import Fliplr [as 别名]
def example_simple_training_setting():
print("Example: Simple Training Setting")
import numpy as np
import imgaug.augmenters as iaa
def load_batch(batch_idx):
# dummy function, implement this
# Return a numpy array of shape (N, height, width, #channels)
# or a list of (height, width, #channels) arrays (may have different image
# sizes).
# Images should be in RGB for colorspace augmentations.
# (cv2.imread() returns BGR!)
# Images should usually be in uint8 with values from 0-255.
return np.zeros((128, 32, 32, 3), dtype=np.uint8) + (batch_idx % 255)
def train_on_images(images):
# dummy function, implement this
pass
# Pipeline:
# (1) Crop images from each side by 1-16px, do not resize the results
# images back to the input size. Keep them at the cropped size.
# (2) Horizontally flip 50% of the images.
# (3) Blur images using a gaussian kernel with sigma between 0.0 and 3.0.
seq = iaa.Sequential([
iaa.Crop(px=(1, 16), keep_size=False),
iaa.Fliplr(0.5),
iaa.GaussianBlur(sigma=(0, 3.0))
])
for batch_idx in range(100):
images = load_batch(batch_idx)
images_aug = seq(images=images) # done by the library
train_on_images(images_aug)
# -----
# Make sure that the example really does something
if batch_idx == 0:
assert not np.array_equal(images, images_aug)