当前位置: 首页>>代码示例>>Python>>正文


Python augmenters.ElasticTransformation方法代码示例

本文整理汇总了Python中imgaug.augmenters.ElasticTransformation方法的典型用法代码示例。如果您正苦于以下问题:Python augmenters.ElasticTransformation方法的具体用法?Python augmenters.ElasticTransformation怎么用?Python augmenters.ElasticTransformation使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在imgaug.augmenters的用法示例。


在下文中一共展示了augmenters.ElasticTransformation方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import ElasticTransformation [as 别名]
def __init__(self, image_ids, epoch_size):
        super().__init__()
        self.image_ids = image_ids
        self.epoch_size = epoch_size
        self.elastic = iaa.ElasticTransformation(alpha=(0.25, 1.2), sigma=0.2)
        #self.piecewiseAffine = iaa.PiecewiseAffine(scale=(0.01, 0.05)) 
开发者ID:SpaceNetChallenge,项目名称:SpaceNet_Off_Nadir_Solutions,代码行数:8,代码来源:train154_9ch_fold.py

示例2: __init__

# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import ElasticTransformation [as 别名]
def __init__(self, image_ids, epoch_size):
        super().__init__()
        self.image_ids = image_ids
        self.epoch_size = epoch_size
        self.elastic = iaa.ElasticTransformation(alpha=(0.25, 1.2), sigma=0.2) 
开发者ID:SpaceNetChallenge,项目名称:SpaceNet_Off_Nadir_Solutions,代码行数:7,代码来源:train50_9ch_fold.py

示例3: chapter_augmenters_elastictransformation

# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import ElasticTransformation [as 别名]
def chapter_augmenters_elastictransformation():
    aug = iaa.ElasticTransformation(alpha=(0, 5.0), sigma=0.25)
    run_and_save_augseq(
        "elastictransformations.jpg", aug,
        [ia.quokka(size=(128, 128)) for _ in range(8)], cols=4, rows=2,
        quality=75
    )

    alphas = np.linspace(0.0, 5.0, num=8)
    run_and_save_augseq(
        "elastictransformations_vary_alpha.jpg",
        [iaa.ElasticTransformation(alpha=alpha, sigma=0.25) for alpha in alphas],
        [ia.quokka(size=(128, 128)) for _ in range(8)], cols=8, rows=1,
        quality=75
    )

    sigmas = np.linspace(0.01, 1.0, num=8)
    run_and_save_augseq(
        "elastictransformations_vary_sigmas.jpg",
        [iaa.ElasticTransformation(alpha=2.5, sigma=sigma) for sigma in sigmas],
        [ia.quokka(size=(128, 128)) for _ in range(8)], cols=8, rows=1,
        quality=75
    )

###############################
# Parameters
############################### 
开发者ID:JoshuaPiinRueyPan,项目名称:ViolenceDetection,代码行数:29,代码来源:generate_documentation_images.py

示例4: _create_augment_pipeline

# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import ElasticTransformation [as 别名]
def _create_augment_pipeline():
    from imgaug import augmenters as iaa
    
    ### augmentors by https://github.com/aleju/imgaug
    sometimes = lambda aug: iaa.Sometimes(0.5, aug)

    # Define our sequence of augmentation steps that will be applied to every image
    # All augmenters with per_channel=0.5 will sample one value _per image_
    # in 50% of all cases. In all other cases they will sample new values
    # _per channel_.
    aug_pipe = iaa.Sequential(
        [
            # apply the following augmenters to most images
            #iaa.Fliplr(0.5), # horizontally flip 50% of all images
            #iaa.Flipud(0.2), # vertically flip 20% of all images
            #sometimes(iaa.Crop(percent=(0, 0.1))), # crop images by 0-10% of their height/width
            sometimes(iaa.Affine(
                #scale={"x": (0.8, 1.2), "y": (0.8, 1.2)}, # scale images to 80-120% of their size, individually per axis
                #translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)}, # translate by -20 to +20 percent (per axis)
                #rotate=(-5, 5), # rotate by -45 to +45 degrees
                #shear=(-5, 5), # shear by -16 to +16 degrees
                #order=[0, 1], # use nearest neighbour or bilinear interpolation (fast)
                #cval=(0, 255), # if mode is constant, use a cval between 0 and 255
                #mode=ia.ALL # use any of scikit-image's warping modes (see 2nd image from the top for examples)
            )),
            # execute 0 to 5 of the following (less important) augmenters per image
            # don't execute all of them, as that would often be way too strong
            iaa.SomeOf((0, 5),
                [
                    #sometimes(iaa.Superpixels(p_replace=(0, 1.0), n_segments=(20, 200))), # convert images into their superpixel representation
                    iaa.OneOf([
                        iaa.GaussianBlur((0, 3.0)), # blur images with a sigma between 0 and 3.0
                        iaa.AverageBlur(k=(2, 7)), # blur image using local means with kernel sizes between 2 and 7
                        iaa.MedianBlur(k=(3, 11)), # blur image using local medians with kernel sizes between 2 and 7
                    ]),
                    iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)), # sharpen images
                    #iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)), # emboss images
                    # search either for all edges or for directed edges
                    #sometimes(iaa.OneOf([
                    #    iaa.EdgeDetect(alpha=(0, 0.7)),
                    #    iaa.DirectedEdgeDetect(alpha=(0, 0.7), direction=(0.0, 1.0)),
                    #])),
                    iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5), # add gaussian noise to images
                    iaa.OneOf([
                        iaa.Dropout((0.01, 0.1), per_channel=0.5), # randomly remove up to 10% of the pixels
                        #iaa.CoarseDropout((0.03, 0.15), size_percent=(0.02, 0.05), per_channel=0.2),
                    ]),
                    #iaa.Invert(0.05, per_channel=True), # invert color channels
                    iaa.Add((-10, 10), per_channel=0.5), # change brightness of images (by -10 to 10 of original value)
                    iaa.Multiply((0.5, 1.5), per_channel=0.5), # change brightness of images (50-150% of original value)
                    iaa.ContrastNormalization((0.5, 2.0), per_channel=0.5), # improve or worsen the contrast
                    #iaa.Grayscale(alpha=(0.0, 1.0)),
                    #sometimes(iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25)), # move pixels locally around (with random strengths)
                    #sometimes(iaa.PiecewiseAffine(scale=(0.01, 0.05))) # sometimes move parts of the image around
                ],
                random_order=True
            )
        ],
        random_order=True
    )
    return aug_pipe 
开发者ID:penny4860,项目名称:tf2-eager-yolo3,代码行数:63,代码来源:augment.py

示例5: build_augmentation_pipeline

# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import ElasticTransformation [as 别名]
def build_augmentation_pipeline(self, height=None, width=None, apply_prob=0.5):
        sometimes = lambda aug: iaa.Sometimes(apply_prob, aug)
        pipeline = iaa.Sequential(random_order=False)
        cfg = self.cfg
        if cfg.get("fliplr", False):
            opt = cfg.get("fliplr", False)
            if type(opt) == int:
                pipeline.add(sometimes(iaa.Fliplr(opt)))
            else:
                pipeline.add(sometimes(iaa.Fliplr(0.5)))
        if cfg.get("rotation", False):
            opt = cfg.get("rotation", False)
            if type(opt) == int:
                pipeline.add(sometimes(iaa.Affine(rotate=(-opt, opt))))
            else:
                pipeline.add(sometimes(iaa.Affine(rotate=(-10, 10))))
        if cfg.get("hist_eq", False):
            pipeline.add(sometimes(iaa.AllChannelsHistogramEqualization()))
        if cfg.get("motion_blur", False):
            opts = cfg.get("motion_blur", False)
            if type(opts) == list:
                opts = dict(opts)
                pipeline.add(sometimes(iaa.MotionBlur(**opts)))
            else:
                pipeline.add(sometimes(iaa.MotionBlur(k=7, angle=(-90, 90))))
        if cfg.get("covering", False):
            pipeline.add(
                sometimes(iaa.CoarseDropout((0, 0.02), size_percent=(0.01, 0.05)))
            )  # , per_channel=0.5)))
        if cfg.get("elastic_transform", False):
            pipeline.add(sometimes(iaa.ElasticTransformation(sigma=5)))
        if cfg.get("gaussian_noise", False):
            opt = cfg.get("gaussian_noise", False)
            if type(opt) == int or type(opt) == float:
                pipeline.add(
                    sometimes(
                        iaa.AdditiveGaussianNoise(
                            loc=0, scale=(0.0, opt), per_channel=0.5
                        )
                    )
                )
            else:
                pipeline.add(
                    sometimes(
                        iaa.AdditiveGaussianNoise(
                            loc=0, scale=(0.0, 0.05 * 255), per_channel=0.5
                        )
                    )
                )
        if height is not None and width is not None:
            pipeline.add(
                iaa.Sometimes(
                    cfg.cropratio, iaa.CropAndPad(percent=(-0.3, 0.1), keep_size=False)
                )
            )
            pipeline.add(iaa.Resize({"height": height, "width": width}))
        return pipeline 
开发者ID:DeepLabCut,项目名称:DeepLabCut,代码行数:59,代码来源:pose_multianimal_imgaug.py

示例6: heavy_aug_on_fly

# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import ElasticTransformation [as 别名]
def heavy_aug_on_fly(img, det_mask):
    """Do augmentation with different combination on each training batch
    """

    def image_heavy_augmentation(image, det_masks, ratio_operations=0.6):
        # according to the paper, operations such as shearing, fliping horizontal/vertical,
        # rotating, zooming and channel shifting will be apply
        sometimes = lambda aug: iaa.Sometimes(ratio_operations, aug)
        edge_detect_sometime = lambda aug: iaa.Sometimes(0.1, aug)
        elasitic_sometime = lambda aug:iaa.Sometimes(0.2, aug)
        add_gauss_noise = lambda aug: iaa.Sometimes(0.15, aug)
        hor_flip_angle = np.random.uniform(0, 1)
        ver_flip_angle = np.random.uniform(0, 1)
        seq = iaa.Sequential([
            iaa.SomeOf((0, 5), [
                iaa.Fliplr(hor_flip_angle),
                iaa.Flipud(ver_flip_angle),
                iaa.Affine(shear=(-16, 16)),
                iaa.Affine(scale={'x': (1, 1.6), 'y': (1, 1.6)}),
                iaa.PerspectiveTransform(scale=(0.01, 0.1)),

                # These are additional augmentation.
                #iaa.ContrastNormalization((0.75, 1.5))

            ]),

            edge_detect_sometime(iaa.OneOf([
                iaa.EdgeDetect(alpha=(0, 0.7)),
                iaa.DirectedEdgeDetect(alpha=(0,0.7), direction=(0.0, 1.0)
                                       )
            ])),
            add_gauss_noise(iaa.AdditiveGaussianNoise(loc=0,
                                                      scale=(0.0, 0.05*255),
                                                      per_channel=0.5)
                            ),
            iaa.Sometimes(0.3,
                          iaa.GaussianBlur(sigma=(0, 0.5))
                          ),
            elasitic_sometime(
                iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25))
        ])

        seq_to_deterministic = seq.to_deterministic()
        aug_img = seq_to_deterministic.augment_images(image)
        aug_det_mask = seq_to_deterministic.augment_images(det_masks)
        return aug_img, aug_det_mask

    aug_image, aug_det_mask = image_heavy_augmentation(image=img, det_masks=det_mask)
    return aug_image, aug_det_mask 
开发者ID:zhuyiche,项目名称:sfcn-opi,代码行数:51,代码来源:util.py

示例7: get_augmentations

# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import ElasticTransformation [as 别名]
def get_augmentations():
    # applies the given augmenter in 50% of all cases,
    sometimes = lambda aug: iaa.Sometimes(0.5, aug)

    # Define our sequence of augmentation steps that will be applied to every image
    seq = iaa.Sequential([
            # execute 0 to 5 of the following (less important) augmenters per image
            iaa.SomeOf((0, 5),
                [
                    iaa.OneOf([
                        iaa.GaussianBlur((0, 3.0)),
                        iaa.AverageBlur(k=(2, 7)), 
                        iaa.MedianBlur(k=(3, 11)),
                    ]),
                    iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)),
                    iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)), 
                    # search either for all edges or for directed edges,
                    # blend the result with the original image using a blobby mask
                    iaa.SimplexNoiseAlpha(iaa.OneOf([
                        iaa.EdgeDetect(alpha=(0.5, 1.0)),
                        iaa.DirectedEdgeDetect(alpha=(0.5, 1.0), direction=(0.0, 1.0)),
                    ])),
                    iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5),
                    iaa.OneOf([
                        iaa.Dropout((0.01, 0.1), per_channel=0.5), # randomly remove up to 10% of the pixels
                        iaa.CoarseDropout((0.03, 0.15), size_percent=(0.02, 0.05), per_channel=0.2),
                    ]),
                    iaa.Add((-10, 10), per_channel=0.5), # change brightness of images (by -10 to 10 of original value)
                    iaa.AddToHueAndSaturation((-20, 20)), # change hue and saturation
                    # either change the brightness of the whole image (sometimes
                    # per channel) or change the brightness of subareas
                    iaa.OneOf([
                        iaa.Multiply((0.5, 1.5), per_channel=0.5),
                        iaa.FrequencyNoiseAlpha(
                            exponent=(-4, 0),
                            first=iaa.Multiply((0.5, 1.5), per_channel=True),
                            second=iaa.ContrastNormalization((0.5, 2.0))
                        )
                    ]),
                    iaa.ContrastNormalization((0.5, 2.0), per_channel=0.5), # improve or worsen the contrast
                    sometimes(iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25)), # move pixels locally around (with random strengths)
                ],
                random_order=True
            )
        ],
        random_order=True
    )
    return seq

### data transforms 
开发者ID:xl-sr,项目名称:CAL,代码行数:52,代码来源:dataloader.py

示例8: main

# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import ElasticTransformation [as 别名]
def main():
    image = data.astronaut()
    image = ia.imresize_single_image(image, (128, 128))

    images = []
    params = [
        (0.25, 0.25),
        (1.0, 0.25),
        (2.0, 0.25),
        (3.0, 0.25),
        (0.25, 0.50),
        (1.0, 0.50),
        (2.0, 0.50),
        (3.0, 0.50),
        (0.25, 0.75),
        (1.0, 0.75),
        (2.0, 0.75),
        (3.0, 0.75)
    ]

    for (alpha, sigma) in params:
        images_row = []
        seqs_row = [
            iaa.ElasticTransformation(alpha=alpha, sigma=sigma, mode="constant", cval=0, order=0),
            iaa.ElasticTransformation(alpha=alpha, sigma=sigma, mode="constant", cval=128, order=0),
            iaa.ElasticTransformation(alpha=alpha, sigma=sigma, mode="constant", cval=255, order=0),
            iaa.ElasticTransformation(alpha=alpha, sigma=sigma, mode="constant", cval=0, order=1),
            iaa.ElasticTransformation(alpha=alpha, sigma=sigma, mode="constant", cval=128, order=1),
            iaa.ElasticTransformation(alpha=alpha, sigma=sigma, mode="constant", cval=255, order=1),
            iaa.ElasticTransformation(alpha=alpha, sigma=sigma, mode="constant", cval=0, order=3),
            iaa.ElasticTransformation(alpha=alpha, sigma=sigma, mode="constant", cval=128, order=3),
            iaa.ElasticTransformation(alpha=alpha, sigma=sigma, mode="constant", cval=255, order=3),
            iaa.ElasticTransformation(alpha=alpha, sigma=sigma, mode="nearest", order=0),
            iaa.ElasticTransformation(alpha=alpha, sigma=sigma, mode="nearest", order=1),
            iaa.ElasticTransformation(alpha=alpha, sigma=sigma, mode="nearest", order=2),
            iaa.ElasticTransformation(alpha=alpha, sigma=sigma, mode="nearest", order=3),
            iaa.ElasticTransformation(alpha=alpha, sigma=sigma, mode="reflect", order=0),
            iaa.ElasticTransformation(alpha=alpha, sigma=sigma, mode="reflect", order=1),
            iaa.ElasticTransformation(alpha=alpha, sigma=sigma, mode="reflect", order=2),
            iaa.ElasticTransformation(alpha=alpha, sigma=sigma, mode="reflect", order=3),
            iaa.ElasticTransformation(alpha=alpha, sigma=sigma, mode="wrap", order=0),
            iaa.ElasticTransformation(alpha=alpha, sigma=sigma, mode="wrap", order=1),
            iaa.ElasticTransformation(alpha=alpha, sigma=sigma, mode="wrap", order=2),
            iaa.ElasticTransformation(alpha=alpha, sigma=sigma, mode="wrap", order=3)
        ]

        for seq in seqs_row:
            images_row.append(
                seq.augment_image(image)
            )

        images.append(np.hstack(images_row))

    misc.imshow(np.vstack(images))
    misc.imsave("elastic_transformations.jpg", np.vstack(images)) 
开发者ID:JoshuaPiinRueyPan,项目名称:ViolenceDetection,代码行数:57,代码来源:check_elastic_transformation.py

示例9: example_heavy_augmentations

# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import ElasticTransformation [as 别名]
def example_heavy_augmentations():
    print("Example: Heavy Augmentations")
    import imgaug as ia
    from imgaug import augmenters as iaa

    # random example images
    images = np.random.randint(0, 255, (16, 128, 128, 3), dtype=np.uint8)

    # Sometimes(0.5, ...) applies the given augmenter in 50% of all cases,
    # e.g. Sometimes(0.5, GaussianBlur(0.3)) would blur roughly every second image.
    st = lambda aug: iaa.Sometimes(0.5, aug)

    # Define our sequence of augmentation steps that will be applied to every image
    # All augmenters with per_channel=0.5 will sample one value _per image_
    # in 50% of all cases. In all other cases they will sample new values
    # _per channel_.
    seq = iaa.Sequential([
            iaa.Fliplr(0.5), # horizontally flip 50% of all images
            iaa.Flipud(0.5), # vertically flip 50% of all images
            st(iaa.Crop(percent=(0, 0.1))), # crop images by 0-10% of their height/width
            st(iaa.GaussianBlur((0, 3.0))), # blur images with a sigma between 0 and 3.0
            st(iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5)), # add gaussian noise to images
            st(iaa.Dropout((0.0, 0.1), per_channel=0.5)), # randomly remove up to 10% of the pixels
            st(iaa.Add((-10, 10), per_channel=0.5)), # change brightness of images (by -10 to 10 of original value)
            st(iaa.Multiply((0.5, 1.5), per_channel=0.5)), # change brightness of images (50-150% of original value)
            st(iaa.ContrastNormalization((0.5, 2.0), per_channel=0.5)), # improve or worsen the contrast
            st(iaa.Grayscale((0.0, 1.0))), # blend with grayscale image
            st(iaa.Affine(
                scale={"x": (0.8, 1.2), "y": (0.8, 1.2)}, # scale images to 80-120% of their size, individually per axis
                translate_px={"x": (-16, 16), "y": (-16, 16)}, # translate by -16 to +16 pixels (per axis)
                rotate=(-45, 45), # rotate by -45 to +45 degrees
                shear=(-16, 16), # shear by -16 to +16 degrees
                order=[0, 1], # use scikit-image's interpolation orders 0 (nearest neighbour) and 1 (bilinear)
                cval=(0, 255), # if mode is constant, use a cval between 0 and 1.0
                mode=ia.ALL # use any of scikit-image's warping modes (see 2nd image from the top for examples)
            )),
            st(iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25)) # apply elastic transformations with random strengths
        ],
        random_order=True # do all of the above in random order
    )

    images_aug = seq.augment_images(images)

    # -----
    # Make sure that the example really does something
    assert not np.array_equal(images, images_aug) 
开发者ID:JoshuaPiinRueyPan,项目名称:ViolenceDetection,代码行数:48,代码来源:test_readme_examples.py


注:本文中的imgaug.augmenters.ElasticTransformation方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。