本文整理汇总了Python中imgaug.augmenters.Dropout方法的典型用法代码示例。如果您正苦于以下问题:Python augmenters.Dropout方法的具体用法?Python augmenters.Dropout怎么用?Python augmenters.Dropout使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类imgaug.augmenters
的用法示例。
在下文中一共展示了augmenters.Dropout方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import Dropout [as 别名]
def main():
image = data.astronaut()
print("image shape:", image.shape)
print("Press ENTER or wait %d ms to proceed to the next image." % (TIME_PER_STEP,))
children_all = [
("hflip", iaa.Fliplr(1)),
("add", iaa.Add(50)),
("dropout", iaa.Dropout(0.2)),
("affine", iaa.Affine(rotate=35))
]
channels_all = [
None,
0,
[],
[0],
[0, 1],
[1, 2],
[0, 1, 2]
]
cv2.namedWindow("aug", cv2.WINDOW_NORMAL)
cv2.imshow("aug", image[..., ::-1])
cv2.waitKey(TIME_PER_STEP)
for children_title, children in children_all:
for channels in channels_all:
aug = iaa.WithChannels(channels=channels, children=children)
img_aug = aug.augment_image(image)
print("dtype", img_aug.dtype, "averages", np.average(img_aug, axis=tuple(range(0, img_aug.ndim-1))))
title = "children=%s | channels=%s" % (children_title, channels)
img_aug = ia.draw_text(img_aug, x=5, y=5, text=title)
cv2.imshow("aug", img_aug[..., ::-1]) # here with rgb2bgr
cv2.waitKey(TIME_PER_STEP)
示例2: salt
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import Dropout [as 别名]
def salt(image, prob, keys):
""" Adding salt noise """
r = random.uniform(1, 5) * 0.05
aug = iaa.Sequential([iaa.Dropout(p=(0, r)), iaa.CoarseDropout(p=0.001, size_percent=0.01),
iaa.Salt(0.001), iaa.AdditiveGaussianNoise(scale=0.1 * 255)])
aug.add(iaa.Multiply(random.uniform(0.25, 1.5)))
x = random.randrange(-10, 10) * .01
y = random.randrange(-10, 10) * .01
aug.add(iaa.Affine(scale=random.uniform(.7, 1.1), translate_percent={"x": x, "y": y}, cval=(0, 255)))
seq_det = aug.to_deterministic()
image_aug = seq_det.augment_images([image])[0]
keys = ia.KeypointsOnImage([ia.Keypoint(x=keys[0], y=keys[1]),
ia.Keypoint(x=keys[2], y=keys[3]),
ia.Keypoint(x=keys[4], y=keys[5]),
ia.Keypoint(x=keys[6], y=keys[7]),
ia.Keypoint(x=keys[8], y=keys[9])], shape=image.shape)
keys_aug = seq_det.augment_keypoints([keys])[0]
k = keys_aug.keypoints
output = [k[0].x, k[0].y, k[1].x, k[1].y, k[2].x, k[2].y, k[3].x, k[3].y, k[4].x, k[4].y]
index = 0
for i in range(0, len(prob)):
output[index] = output[index] * prob[i]
output[index + 1] = output[index + 1] * prob[i]
index = index + 2
output = np.array(output)
return image_aug, output
示例3: main
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import Dropout [as 别名]
def main():
image = data.astronaut()
print("image shape:", image.shape)
print("Press any key or wait %d ms to proceed to the next image." % (TIME_PER_STEP,))
children_all = [
("hflip", iaa.Fliplr(1)),
("add", iaa.Add(50)),
("dropout", iaa.Dropout(0.2)),
("affine", iaa.Affine(rotate=35))
]
channels_all = [
None,
0,
[],
[0],
[0, 1],
[1, 2],
[0, 1, 2]
]
cv2.namedWindow("aug", cv2.WINDOW_NORMAL)
cv2.imshow("aug", image[..., ::-1])
cv2.waitKey(TIME_PER_STEP)
for children_title, children in children_all:
for channels in channels_all:
aug = iaa.WithChannels(channels=channels, children=children)
img_aug = aug.augment_image(image)
print("dtype", img_aug.dtype, "averages", np.average(img_aug, axis=tuple(range(0, img_aug.ndim-1))))
#print("dtype", img_aug.dtype, "averages", img_aug.mean(axis=range(1, img_aug.ndim)))
title = "children=%s | channels=%s" % (children_title, channels)
img_aug = ia.draw_text(img_aug, x=5, y=5, text=title)
cv2.imshow("aug", img_aug[..., ::-1]) # here with rgb2bgr
cv2.waitKey(TIME_PER_STEP)
示例4: chapter_augmenters_dropout
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import Dropout [as 别名]
def chapter_augmenters_dropout():
aug = iaa.Dropout(p=(0, 0.2))
run_and_save_augseq(
"dropout.jpg", aug,
[ia.quokka(size=(128, 128)) for _ in range(8)], cols=4, rows=2,
quality=75
)
aug = iaa.Dropout(p=(0, 0.2), per_channel=0.5)
run_and_save_augseq(
"dropout_per_channel.jpg", aug,
[ia.quokka(size=(128, 128)) for _ in range(8)], cols=4, rows=2,
quality=75
)
示例5: example_hooks
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import Dropout [as 别名]
def example_hooks():
print("Example: Hooks")
import imgaug as ia
from imgaug import augmenters as iaa
import numpy as np
# images and heatmaps, just arrays filled with value 30
images = np.ones((16, 128, 128, 3), dtype=np.uint8) * 30
heatmaps = np.ones((16, 128, 128, 21), dtype=np.uint8) * 30
# add vertical lines to see the effect of flip
images[:, 16:128-16, 120:124, :] = 120
heatmaps[:, 16:128-16, 120:124, :] = 120
seq = iaa.Sequential([
iaa.Fliplr(0.5, name="Flipper"),
iaa.GaussianBlur((0, 3.0), name="GaussianBlur"),
iaa.Dropout(0.02, name="Dropout"),
iaa.AdditiveGaussianNoise(scale=0.01*255, name="MyLittleNoise"),
iaa.AdditiveGaussianNoise(loc=32, scale=0.0001*255, name="SomeOtherNoise"),
iaa.Affine(translate_px={"x": (-40, 40)}, name="Affine")
])
# change the activated augmenters for heatmaps
def activator_heatmaps(images, augmenter, parents, default):
if augmenter.name in ["GaussianBlur", "Dropout", "MyLittleNoise"]:
return False
else:
# default value for all other augmenters
return default
hooks_heatmaps = ia.HooksImages(activator=activator_heatmaps)
seq_det = seq.to_deterministic() # call this for each batch again, NOT only once at the start
images_aug = seq_det.augment_images(images)
heatmaps_aug = seq_det.augment_images(heatmaps, hooks=hooks_heatmaps)
# -----------
ia.show_grid(images_aug)
ia.show_grid(heatmaps_aug[..., 0:3])
示例6: example_hooks
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import Dropout [as 别名]
def example_hooks():
print("Example: Hooks")
import numpy as np
import imgaug as ia
import imgaug.augmenters as iaa
# Images and heatmaps, just arrays filled with value 30.
# We define the heatmaps here as uint8 arrays as we are going to feed them
# through the pipeline similar to normal images. In that way, every
# augmenter is applied to them.
images = np.full((16, 128, 128, 3), 30, dtype=np.uint8)
heatmaps = np.full((16, 128, 128, 21), 30, dtype=np.uint8)
# add vertical lines to see the effect of flip
images[:, 16:128-16, 120:124, :] = 120
heatmaps[:, 16:128-16, 120:124, :] = 120
seq = iaa.Sequential([
iaa.Fliplr(0.5, name="Flipper"),
iaa.GaussianBlur((0, 3.0), name="GaussianBlur"),
iaa.Dropout(0.02, name="Dropout"),
iaa.AdditiveGaussianNoise(scale=0.01*255, name="MyLittleNoise"),
iaa.AdditiveGaussianNoise(loc=32, scale=0.0001*255, name="SomeOtherNoise"),
iaa.Affine(translate_px={"x": (-40, 40)}, name="Affine")
])
# change the activated augmenters for heatmaps,
# we only want to execute horizontal flip, affine transformation and one of
# the gaussian noises
def activator_heatmaps(images, augmenter, parents, default):
if augmenter.name in ["GaussianBlur", "Dropout", "MyLittleNoise"]:
return False
else:
# default value for all other augmenters
return default
hooks_heatmaps = ia.HooksImages(activator=activator_heatmaps)
# call to_deterministic() once per batch, NOT only once at the start
seq_det = seq.to_deterministic()
images_aug = seq_det(images=images)
heatmaps_aug = seq_det(images=heatmaps, hooks=hooks_heatmaps)
# -----------
ia.show_grid(images_aug)
ia.show_grid(heatmaps_aug[..., 0:3])
示例7: load_annoataion
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import Dropout [as 别名]
def load_annoataion(p, im=None):
'''
load annotation from the text file
:param p:
:return:
'''
text_polys = []
text_tags = []
if not os.path.exists(p):
return np.array(text_polys, dtype=np.float32)
with open(p, 'r') as f:
# reader = csv.reader(f)
reader = f.readlines()
for line in reader:
line = line.split(',')
label = line[-1]
# strip BOM. \ufeff for python3, \xef\xbb\bf for python2
line = [i.strip('\ufeff').strip('\xef\xbb\xbf') for i in line]
# print(line)
x1, y1, x2, y2, x3, y3, x4, y4 = list(map(float, line[:8]))
text_polys.append([[x1, y1], [x2, y2], [x3, y3], [x4, y4]])
if label == '*' or label == '###':
text_tags.append(True)
else:
text_tags.append(False)
# 执行数据增广操作
random_value = np.random.random()
if random_value < 0.2:
# 执行旋转操作
angle = np.random.random() * 10
operation_obj = iaa.Affine(rotate=(-angle, angle), random_state=np.random.randint(0, 10000))
im, text_polys = data_agumentation(im, text_polys, operation_obj)
random_value = np.random.random()
if random_value < 0.1:
# 水平镜像
operation_obj = iaa.Sequential([iaa.Flipud(0.5, random_state=np.random.randint(0, 10000))])
im, text_polys = data_agumentation(im, text_polys, operation_obj)
random_value = np.random.random()
if random_value < 0.1:
# 垂直镜像
operation_obj = iaa.Sequential([iaa.Fliplr(0.5, random_state=np.random.randint(0, 10000))])
# operation_obj = iaa.Affine(shear=(-10, 10))
im, text_polys = data_agumentation(im, text_polys, operation_obj)
random_value = np.random.random()
if random_value < 0.1:
# 随机Dropout
operation_obj = iaa.Sequential([iaa.Dropout(p=(0, 0.1), random_state=np.random.randint(0, 10000))])
im, text_polys = data_agumentation(im, text_polys, operation_obj)
random_value = np.random.random()
if random_value < 0.1:
# 随机增加噪声
operation_obj = iaa.Sequential([iaa.AdditiveGaussianNoise(scale=np.random.random() * 30,
random_state=np.random.randint(0,
10000))])
im, text_polys = data_agumentation(im, text_polys, operation_obj)
return np.array(text_polys, dtype=np.float32), np.array(text_tags, dtype=np.bool), im
示例8: _create_augment_pipeline
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import Dropout [as 别名]
def _create_augment_pipeline():
from imgaug import augmenters as iaa
### augmentors by https://github.com/aleju/imgaug
sometimes = lambda aug: iaa.Sometimes(0.5, aug)
# Define our sequence of augmentation steps that will be applied to every image
# All augmenters with per_channel=0.5 will sample one value _per image_
# in 50% of all cases. In all other cases they will sample new values
# _per channel_.
aug_pipe = iaa.Sequential(
[
# apply the following augmenters to most images
#iaa.Fliplr(0.5), # horizontally flip 50% of all images
#iaa.Flipud(0.2), # vertically flip 20% of all images
#sometimes(iaa.Crop(percent=(0, 0.1))), # crop images by 0-10% of their height/width
sometimes(iaa.Affine(
#scale={"x": (0.8, 1.2), "y": (0.8, 1.2)}, # scale images to 80-120% of their size, individually per axis
#translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)}, # translate by -20 to +20 percent (per axis)
#rotate=(-5, 5), # rotate by -45 to +45 degrees
#shear=(-5, 5), # shear by -16 to +16 degrees
#order=[0, 1], # use nearest neighbour or bilinear interpolation (fast)
#cval=(0, 255), # if mode is constant, use a cval between 0 and 255
#mode=ia.ALL # use any of scikit-image's warping modes (see 2nd image from the top for examples)
)),
# execute 0 to 5 of the following (less important) augmenters per image
# don't execute all of them, as that would often be way too strong
iaa.SomeOf((0, 5),
[
#sometimes(iaa.Superpixels(p_replace=(0, 1.0), n_segments=(20, 200))), # convert images into their superpixel representation
iaa.OneOf([
iaa.GaussianBlur((0, 3.0)), # blur images with a sigma between 0 and 3.0
iaa.AverageBlur(k=(2, 7)), # blur image using local means with kernel sizes between 2 and 7
iaa.MedianBlur(k=(3, 11)), # blur image using local medians with kernel sizes between 2 and 7
]),
iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)), # sharpen images
#iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)), # emboss images
# search either for all edges or for directed edges
#sometimes(iaa.OneOf([
# iaa.EdgeDetect(alpha=(0, 0.7)),
# iaa.DirectedEdgeDetect(alpha=(0, 0.7), direction=(0.0, 1.0)),
#])),
iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5), # add gaussian noise to images
iaa.OneOf([
iaa.Dropout((0.01, 0.1), per_channel=0.5), # randomly remove up to 10% of the pixels
#iaa.CoarseDropout((0.03, 0.15), size_percent=(0.02, 0.05), per_channel=0.2),
]),
#iaa.Invert(0.05, per_channel=True), # invert color channels
iaa.Add((-10, 10), per_channel=0.5), # change brightness of images (by -10 to 10 of original value)
iaa.Multiply((0.5, 1.5), per_channel=0.5), # change brightness of images (50-150% of original value)
iaa.ContrastNormalization((0.5, 2.0), per_channel=0.5), # improve or worsen the contrast
#iaa.Grayscale(alpha=(0.0, 1.0)),
#sometimes(iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25)), # move pixels locally around (with random strengths)
#sometimes(iaa.PiecewiseAffine(scale=(0.01, 0.05))) # sometimes move parts of the image around
],
random_order=True
)
],
random_order=True
)
return aug_pipe
示例9: medium
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import Dropout [as 别名]
def medium(image_iteration):
iteration = image_iteration/(120*1.5)
frequency_factor = 0.05 + float(iteration)/1000000.0
color_factor = float(iteration)/1000000.0
dropout_factor = 0.198667 + (0.03856658 - 0.198667) / (1 + (iteration / 196416.6) ** 1.863486)
blur_factor = 0.5 + (0.5*iteration/100000.0)
add_factor = 10 + 10*iteration/150000.0
multiply_factor_pos = 1 + (2.5*iteration/500000.0)
multiply_factor_neg = 1 - (0.91 * iteration / 500000.0)
contrast_factor_pos = 1 + (0.5*iteration/500000.0)
contrast_factor_neg = 1 - (0.5 * iteration / 500000.0)
#print 'Augment Status ',frequency_factor,color_factor,dropout_factor,blur_factor,add_factor,\
# multiply_factor_pos,multiply_factor_neg,contrast_factor_pos,contrast_factor_neg
augmenter = iaa.Sequential([
iaa.Sometimes(frequency_factor, iaa.GaussianBlur((0, blur_factor))),
# blur images with a sigma between 0 and 1.5
iaa.Sometimes(frequency_factor, iaa.AdditiveGaussianNoise(loc=0, scale=(0.0,dropout_factor ),
per_channel=color_factor)),
# add gaussian noise to images
iaa.Sometimes(frequency_factor, iaa.CoarseDropout((0.0, dropout_factor), size_percent=(
0.08, 0.2), per_channel=color_factor)),
# randomly remove up to X% of the pixels
iaa.Sometimes(frequency_factor, iaa.Dropout((0.0, dropout_factor), per_channel=color_factor)),
# randomly remove up to X% of the pixels
iaa.Sometimes(frequency_factor,
iaa.Add((-add_factor, add_factor), per_channel=color_factor)),
# change brightness of images (by -X to Y of original value)
iaa.Sometimes(frequency_factor,
iaa.Multiply((multiply_factor_neg, multiply_factor_pos), per_channel=color_factor)),
# change brightness of images (X-Y% of original value)
iaa.Sometimes(frequency_factor, iaa.ContrastNormalization((contrast_factor_neg, contrast_factor_pos),
per_channel=color_factor)),
# improve or worsen the contrast
iaa.Sometimes(frequency_factor, iaa.Grayscale((0.0, 1))), # put grayscale
],
random_order=True # do all of the above in random order
)
return augmenter
示例10: soft
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import Dropout [as 别名]
def soft(image_iteration):
iteration = image_iteration/(120*1.5)
frequency_factor = 0.05 + float(iteration)/1200000.0
color_factor = float(iteration)/1200000.0
dropout_factor = 0.198667 + (0.03856658 - 0.198667) / (1 + (iteration / 196416.6) ** 1.863486)
blur_factor = 0.5 + (0.5*iteration/120000.0)
add_factor = 10 + 10*iteration/170000.0
multiply_factor_pos = 1 + (2.5*iteration/800000.0)
multiply_factor_neg = 1 - (0.91 * iteration / 800000.0)
contrast_factor_pos = 1 + (0.5*iteration/800000.0)
contrast_factor_neg = 1 - (0.5 * iteration / 800000.0)
#print ('iteration',iteration,'Augment Status ',frequency_factor,color_factor,dropout_factor,blur_factor,add_factor,
# multiply_factor_pos,multiply_factor_neg,contrast_factor_pos,contrast_factor_neg)
augmenter = iaa.Sequential([
iaa.Sometimes(frequency_factor, iaa.GaussianBlur((0, blur_factor))),
# blur images with a sigma between 0 and 1.5
iaa.Sometimes(frequency_factor, iaa.AdditiveGaussianNoise(loc=0, scale=(0.0,dropout_factor ),
per_channel=color_factor)),
# add gaussian noise to images
iaa.Sometimes(frequency_factor, iaa.CoarseDropout((0.0, dropout_factor), size_percent=(
0.08, 0.2), per_channel=color_factor)),
# randomly remove up to X% of the pixels
iaa.Sometimes(frequency_factor, iaa.Dropout((0.0, dropout_factor), per_channel=color_factor)),
# randomly remove up to X% of the pixels
iaa.Sometimes(frequency_factor,
iaa.Add((-add_factor, add_factor), per_channel=color_factor)),
# change brightness of images (by -X to Y of original value)
iaa.Sometimes(frequency_factor,
iaa.Multiply((multiply_factor_neg, multiply_factor_pos), per_channel=color_factor)),
# change brightness of images (X-Y% of original value)
iaa.Sometimes(frequency_factor, iaa.ContrastNormalization((contrast_factor_neg, contrast_factor_pos),
per_channel=color_factor)),
# improve or worsen the contrast
iaa.Sometimes(frequency_factor, iaa.Grayscale((0.0, 1))), # put grayscale
],
random_order=True # do all of the above in random order
)
return augmenter
示例11: high
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import Dropout [as 别名]
def high(image_iteration):
iteration = image_iteration/(120*1.5)
frequency_factor = 0.05 + float(iteration)/800000.0
color_factor = float(iteration)/800000.0
dropout_factor = 0.198667 + (0.03856658 - 0.198667) / (1 + (iteration / 196416.6) ** 1.863486)
blur_factor = 0.5 + (0.5*iteration/80000.0)
add_factor = 10 + 10*iteration/120000.0
multiply_factor_pos = 1 + (2.5*iteration/350000.0)
multiply_factor_neg = 1 - (0.91 * iteration / 400000.0)
contrast_factor_pos = 1 + (0.5*iteration/350000.0)
contrast_factor_neg = 1 - (0.5 * iteration / 400000.0)
#print ('iteration',iteration,'Augment Status ',frequency_factor,color_factor,dropout_factor,blur_factor,add_factor,
# multiply_factor_pos,multiply_factor_neg,contrast_factor_pos,contrast_factor_neg)
augmenter = iaa.Sequential([
iaa.Sometimes(frequency_factor, iaa.GaussianBlur((0, blur_factor))),
# blur images with a sigma between 0 and 1.5
iaa.Sometimes(frequency_factor, iaa.AdditiveGaussianNoise(loc=0, scale=(0.0,dropout_factor ),
per_channel=color_factor)),
# add gaussian noise to images
iaa.Sometimes(frequency_factor, iaa.CoarseDropout((0.0, dropout_factor), size_percent=(
0.08, 0.2), per_channel=color_factor)),
# randomly remove up to X% of the pixels
iaa.Sometimes(frequency_factor, iaa.Dropout((0.0, dropout_factor), per_channel=color_factor)),
# randomly remove up to X% of the pixels
iaa.Sometimes(frequency_factor,
iaa.Add((-add_factor, add_factor), per_channel=color_factor)),
# change brightness of images (by -X to Y of original value)
iaa.Sometimes(frequency_factor,
iaa.Multiply((multiply_factor_neg, multiply_factor_pos), per_channel=color_factor)),
# change brightness of images (X-Y% of original value)
iaa.Sometimes(frequency_factor, iaa.ContrastNormalization((contrast_factor_neg, contrast_factor_pos),
per_channel=color_factor)),
# improve or worsen the contrast
iaa.Sometimes(frequency_factor, iaa.Grayscale((0.0, 1))), # put grayscale
],
random_order=True # do all of the above in random order
)
return augmenter
示例12: medium_harder
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import Dropout [as 别名]
def medium_harder(image_iteration):
iteration = image_iteration / 120
frequency_factor = 0.05 + float(iteration)/1000000.0
color_factor = float(iteration)/1000000.0
dropout_factor = 0.198667 + (0.03856658 - 0.198667) / (1 + (iteration / 196416.6) ** 1.863486)
blur_factor = 0.5 + (0.5*iteration/100000.0)
add_factor = 10 + 10*iteration/150000.0
multiply_factor_pos = 1 + (2.5*iteration/500000.0)
multiply_factor_neg = 1 - (0.91 * iteration / 500000.0)
contrast_factor_pos = 1 + (0.5*iteration/500000.0)
contrast_factor_neg = 1 - (0.5 * iteration / 500000.0)
#print 'Augment Status ',frequency_factor,color_factor,dropout_factor,blur_factor,add_factor,\
# multiply_factor_pos,multiply_factor_neg,contrast_factor_pos,contrast_factor_neg
augmenter = iaa.Sequential([
iaa.Sometimes(frequency_factor, iaa.GaussianBlur((0, blur_factor))),
# blur images with a sigma between 0 and 1.5
iaa.Sometimes(frequency_factor, iaa.AdditiveGaussianNoise(loc=0, scale=(0.0,dropout_factor ),
per_channel=color_factor)),
# add gaussian noise to images
iaa.Sometimes(frequency_factor, iaa.CoarseDropout((0.0, dropout_factor), size_percent=(
0.08, 0.2), per_channel=color_factor)),
# randomly remove up to X% of the pixels
iaa.Sometimes(frequency_factor, iaa.Dropout((0.0, dropout_factor), per_channel=color_factor)),
# randomly remove up to X% of the pixels
iaa.Sometimes(frequency_factor,
iaa.Add((-add_factor, add_factor), per_channel=color_factor)),
# change brightness of images (by -X to Y of original value)
iaa.Sometimes(frequency_factor,
iaa.Multiply((multiply_factor_neg, multiply_factor_pos), per_channel=color_factor)),
# change brightness of images (X-Y% of original value)
iaa.Sometimes(frequency_factor, iaa.ContrastNormalization((contrast_factor_neg, contrast_factor_pos),
per_channel=color_factor)),
# improve or worsen the contrast
iaa.Sometimes(frequency_factor, iaa.Grayscale((0.0, 1))), # put grayscale
],
random_order=True # do all of the above in random order
)
return augmenter
示例13: hard_harder
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import Dropout [as 别名]
def hard_harder(image_iteration):
iteration = image_iteration / 120
frequency_factor = min(0.05 + float(iteration)/200000.0, 1.0)
color_factor = float(iteration)/1000000.0
dropout_factor = 0.198667 + (0.03856658 - 0.198667) / (1 + (iteration / 196416.6) ** 1.863486)
blur_factor = 0.5 + (0.5*iteration/100000.0)
add_factor = 10 + 10*iteration/100000.0
multiply_factor_pos = 1 + (2.5*iteration/200000.0)
multiply_factor_neg = 1 - (0.91 * iteration / 500000.0)
contrast_factor_pos = 1 + (0.5*iteration/500000.0)
contrast_factor_neg = 1 - (0.5 * iteration / 500000.0)
#print 'Augment Status ',frequency_factor,color_factor,dropout_factor,blur_factor,add_factor,\
# multiply_factor_pos,multiply_factor_neg,contrast_factor_pos,contrast_factor_neg
augmenter = iaa.Sequential([
iaa.Sometimes(frequency_factor, iaa.GaussianBlur((0, blur_factor))),
# blur images with a sigma between 0 and 1.5
iaa.Sometimes(frequency_factor, iaa.AdditiveGaussianNoise(loc=0, scale=(0.0,dropout_factor ),
per_channel=color_factor)),
# add gaussian noise to images
iaa.Sometimes(frequency_factor, iaa.CoarseDropout((0.0, dropout_factor), size_percent=(
0.08, 0.2), per_channel=color_factor)),
# randomly remove up to X% of the pixels
iaa.Sometimes(frequency_factor, iaa.Dropout((0.0, dropout_factor), per_channel=color_factor)),
# randomly remove up to X% of the pixels
iaa.Sometimes(frequency_factor,
iaa.Add((-add_factor, add_factor), per_channel=color_factor)),
# change brightness of images (by -X to Y of original value)
iaa.Sometimes(frequency_factor,
iaa.Multiply((multiply_factor_neg, multiply_factor_pos), per_channel=color_factor)),
# change brightness of images (X-Y% of original value)
iaa.Sometimes(frequency_factor, iaa.ContrastNormalization((contrast_factor_neg, contrast_factor_pos),
per_channel=color_factor)),
# improve or worsen the contrast
iaa.Sometimes(frequency_factor, iaa.Grayscale((0.0, 1))), # put grayscale
],
random_order=True # do all of the above in random order
)
return augmenter
示例14: get_augmentations
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import Dropout [as 别名]
def get_augmentations():
# applies the given augmenter in 50% of all cases,
sometimes = lambda aug: iaa.Sometimes(0.5, aug)
# Define our sequence of augmentation steps that will be applied to every image
seq = iaa.Sequential([
# execute 0 to 5 of the following (less important) augmenters per image
iaa.SomeOf((0, 5),
[
iaa.OneOf([
iaa.GaussianBlur((0, 3.0)),
iaa.AverageBlur(k=(2, 7)),
iaa.MedianBlur(k=(3, 11)),
]),
iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)),
iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)),
# search either for all edges or for directed edges,
# blend the result with the original image using a blobby mask
iaa.SimplexNoiseAlpha(iaa.OneOf([
iaa.EdgeDetect(alpha=(0.5, 1.0)),
iaa.DirectedEdgeDetect(alpha=(0.5, 1.0), direction=(0.0, 1.0)),
])),
iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5),
iaa.OneOf([
iaa.Dropout((0.01, 0.1), per_channel=0.5), # randomly remove up to 10% of the pixels
iaa.CoarseDropout((0.03, 0.15), size_percent=(0.02, 0.05), per_channel=0.2),
]),
iaa.Add((-10, 10), per_channel=0.5), # change brightness of images (by -10 to 10 of original value)
iaa.AddToHueAndSaturation((-20, 20)), # change hue and saturation
# either change the brightness of the whole image (sometimes
# per channel) or change the brightness of subareas
iaa.OneOf([
iaa.Multiply((0.5, 1.5), per_channel=0.5),
iaa.FrequencyNoiseAlpha(
exponent=(-4, 0),
first=iaa.Multiply((0.5, 1.5), per_channel=True),
second=iaa.ContrastNormalization((0.5, 2.0))
)
]),
iaa.ContrastNormalization((0.5, 2.0), per_channel=0.5), # improve or worsen the contrast
sometimes(iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25)), # move pixels locally around (with random strengths)
],
random_order=True
)
],
random_order=True
)
return seq
### data transforms
示例15: example_heavy_augmentations
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import Dropout [as 别名]
def example_heavy_augmentations():
print("Example: Heavy Augmentations")
import imgaug as ia
from imgaug import augmenters as iaa
# random example images
images = np.random.randint(0, 255, (16, 128, 128, 3), dtype=np.uint8)
# Sometimes(0.5, ...) applies the given augmenter in 50% of all cases,
# e.g. Sometimes(0.5, GaussianBlur(0.3)) would blur roughly every second image.
st = lambda aug: iaa.Sometimes(0.5, aug)
# Define our sequence of augmentation steps that will be applied to every image
# All augmenters with per_channel=0.5 will sample one value _per image_
# in 50% of all cases. In all other cases they will sample new values
# _per channel_.
seq = iaa.Sequential([
iaa.Fliplr(0.5), # horizontally flip 50% of all images
iaa.Flipud(0.5), # vertically flip 50% of all images
st(iaa.Crop(percent=(0, 0.1))), # crop images by 0-10% of their height/width
st(iaa.GaussianBlur((0, 3.0))), # blur images with a sigma between 0 and 3.0
st(iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5)), # add gaussian noise to images
st(iaa.Dropout((0.0, 0.1), per_channel=0.5)), # randomly remove up to 10% of the pixels
st(iaa.Add((-10, 10), per_channel=0.5)), # change brightness of images (by -10 to 10 of original value)
st(iaa.Multiply((0.5, 1.5), per_channel=0.5)), # change brightness of images (50-150% of original value)
st(iaa.ContrastNormalization((0.5, 2.0), per_channel=0.5)), # improve or worsen the contrast
st(iaa.Grayscale((0.0, 1.0))), # blend with grayscale image
st(iaa.Affine(
scale={"x": (0.8, 1.2), "y": (0.8, 1.2)}, # scale images to 80-120% of their size, individually per axis
translate_px={"x": (-16, 16), "y": (-16, 16)}, # translate by -16 to +16 pixels (per axis)
rotate=(-45, 45), # rotate by -45 to +45 degrees
shear=(-16, 16), # shear by -16 to +16 degrees
order=[0, 1], # use scikit-image's interpolation orders 0 (nearest neighbour) and 1 (bilinear)
cval=(0, 255), # if mode is constant, use a cval between 0 and 1.0
mode=ia.ALL # use any of scikit-image's warping modes (see 2nd image from the top for examples)
)),
st(iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25)) # apply elastic transformations with random strengths
],
random_order=True # do all of the above in random order
)
images_aug = seq.augment_images(images)
# -----
# Make sure that the example really does something
assert not np.array_equal(images, images_aug)