本文整理汇总了Python中imgaug.augmenters.CoarseDropout方法的典型用法代码示例。如果您正苦于以下问题:Python augmenters.CoarseDropout方法的具体用法?Python augmenters.CoarseDropout怎么用?Python augmenters.CoarseDropout使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类imgaug.augmenters
的用法示例。
在下文中一共展示了augmenters.CoarseDropout方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: chapter_augmenters_coarsedropout
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import CoarseDropout [as 别名]
def chapter_augmenters_coarsedropout():
aug = iaa.CoarseDropout(0.02, size_percent=0.5)
run_and_save_augseq(
"coarsedropout.jpg", aug,
[ia.quokka(size=(128, 128)) for _ in range(8)], cols=4, rows=2,
quality=75
)
aug = iaa.CoarseDropout((0.0, 0.05), size_percent=(0.02, 0.25))
run_and_save_augseq(
"coarsedropout_both_uniform.jpg", aug,
[ia.quokka(size=(128, 128)) for _ in range(8)], cols=4, rows=2,
quality=75,
seed=2
)
aug = iaa.CoarseDropout(0.02, size_percent=0.15, per_channel=0.5)
run_and_save_augseq(
"coarsedropout_per_channel.jpg", aug,
[ia.quokka(size=(128, 128)) for _ in range(8)], cols=4, rows=2,
quality=75,
seed=2
)
示例2: example_multicore_augmentation
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import CoarseDropout [as 别名]
def example_multicore_augmentation():
print("Example: Multicore Augmentation")
import skimage.data
import imgaug as ia
import imgaug.augmenters as iaa
from imgaug.augmentables.batches import UnnormalizedBatch
# Number of batches and batch size for this example
nb_batches = 10
batch_size = 32
# Example augmentation sequence to run in the background
augseq = iaa.Sequential([
iaa.Fliplr(0.5),
iaa.CoarseDropout(p=0.1, size_percent=0.1)
])
# For simplicity, we use the same image here many times
astronaut = skimage.data.astronaut()
astronaut = ia.imresize_single_image(astronaut, (64, 64))
# Make batches out of the example image (here: 10 batches, each 32 times
# the example image)
batches = []
for _ in range(nb_batches):
batches.append(UnnormalizedBatch(images=[astronaut] * batch_size))
# Show the augmented images.
# Note that augment_batches() returns a generator.
for images_aug in augseq.augment_batches(batches, background=True):
ia.imshow(ia.draw_grid(images_aug.images_aug, cols=8))
示例3: salt
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import CoarseDropout [as 别名]
def salt(image, prob, keys):
""" Adding salt noise """
r = random.uniform(1, 5) * 0.05
aug = iaa.Sequential([iaa.Dropout(p=(0, r)), iaa.CoarseDropout(p=0.001, size_percent=0.01),
iaa.Salt(0.001), iaa.AdditiveGaussianNoise(scale=0.1 * 255)])
aug.add(iaa.Multiply(random.uniform(0.25, 1.5)))
x = random.randrange(-10, 10) * .01
y = random.randrange(-10, 10) * .01
aug.add(iaa.Affine(scale=random.uniform(.7, 1.1), translate_percent={"x": x, "y": y}, cval=(0, 255)))
seq_det = aug.to_deterministic()
image_aug = seq_det.augment_images([image])[0]
keys = ia.KeypointsOnImage([ia.Keypoint(x=keys[0], y=keys[1]),
ia.Keypoint(x=keys[2], y=keys[3]),
ia.Keypoint(x=keys[4], y=keys[5]),
ia.Keypoint(x=keys[6], y=keys[7]),
ia.Keypoint(x=keys[8], y=keys[9])], shape=image.shape)
keys_aug = seq_det.augment_keypoints([keys])[0]
k = keys_aug.keypoints
output = [k[0].x, k[0].y, k[1].x, k[1].y, k[2].x, k[2].y, k[3].x, k[3].y, k[4].x, k[4].y]
index = 0
for i in range(0, len(prob)):
output[index] = output[index] * prob[i]
output[index + 1] = output[index + 1] * prob[i]
index = index + 2
output = np.array(output)
return image_aug, output
示例4: example_background_augment_batches
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import CoarseDropout [as 别名]
def example_background_augment_batches():
print("Example: Background Augmentation via augment_batches()")
import imgaug as ia
from imgaug import augmenters as iaa
import numpy as np
from skimage import data
# Number of batches and batch size for this example
nb_batches = 10
batch_size = 32
# Example augmentation sequence to run in the background
augseq = iaa.Sequential([
iaa.Fliplr(0.5),
iaa.CoarseDropout(p=0.1, size_percent=0.1)
])
# For simplicity, we use the same image here many times
astronaut = data.astronaut()
astronaut = ia.imresize_single_image(astronaut, (64, 64))
# Make batches out of the example image (here: 10 batches, each 32 times
# the example image)
batches = []
for _ in range(nb_batches):
batches.append(
np.array(
[astronaut for _ in range(batch_size)],
dtype=np.uint8
)
)
# Show the augmented images.
# Note that augment_batches() returns a generator.
for images_aug in augseq.augment_batches(batches, background=True):
misc.imshow(ia.draw_grid(images_aug, cols=8))
示例5: _create_augment_pipeline
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import CoarseDropout [as 别名]
def _create_augment_pipeline():
from imgaug import augmenters as iaa
### augmentors by https://github.com/aleju/imgaug
sometimes = lambda aug: iaa.Sometimes(0.5, aug)
# Define our sequence of augmentation steps that will be applied to every image
# All augmenters with per_channel=0.5 will sample one value _per image_
# in 50% of all cases. In all other cases they will sample new values
# _per channel_.
aug_pipe = iaa.Sequential(
[
# apply the following augmenters to most images
#iaa.Fliplr(0.5), # horizontally flip 50% of all images
#iaa.Flipud(0.2), # vertically flip 20% of all images
#sometimes(iaa.Crop(percent=(0, 0.1))), # crop images by 0-10% of their height/width
sometimes(iaa.Affine(
#scale={"x": (0.8, 1.2), "y": (0.8, 1.2)}, # scale images to 80-120% of their size, individually per axis
#translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)}, # translate by -20 to +20 percent (per axis)
#rotate=(-5, 5), # rotate by -45 to +45 degrees
#shear=(-5, 5), # shear by -16 to +16 degrees
#order=[0, 1], # use nearest neighbour or bilinear interpolation (fast)
#cval=(0, 255), # if mode is constant, use a cval between 0 and 255
#mode=ia.ALL # use any of scikit-image's warping modes (see 2nd image from the top for examples)
)),
# execute 0 to 5 of the following (less important) augmenters per image
# don't execute all of them, as that would often be way too strong
iaa.SomeOf((0, 5),
[
#sometimes(iaa.Superpixels(p_replace=(0, 1.0), n_segments=(20, 200))), # convert images into their superpixel representation
iaa.OneOf([
iaa.GaussianBlur((0, 3.0)), # blur images with a sigma between 0 and 3.0
iaa.AverageBlur(k=(2, 7)), # blur image using local means with kernel sizes between 2 and 7
iaa.MedianBlur(k=(3, 11)), # blur image using local medians with kernel sizes between 2 and 7
]),
iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)), # sharpen images
#iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)), # emboss images
# search either for all edges or for directed edges
#sometimes(iaa.OneOf([
# iaa.EdgeDetect(alpha=(0, 0.7)),
# iaa.DirectedEdgeDetect(alpha=(0, 0.7), direction=(0.0, 1.0)),
#])),
iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5), # add gaussian noise to images
iaa.OneOf([
iaa.Dropout((0.01, 0.1), per_channel=0.5), # randomly remove up to 10% of the pixels
#iaa.CoarseDropout((0.03, 0.15), size_percent=(0.02, 0.05), per_channel=0.2),
]),
#iaa.Invert(0.05, per_channel=True), # invert color channels
iaa.Add((-10, 10), per_channel=0.5), # change brightness of images (by -10 to 10 of original value)
iaa.Multiply((0.5, 1.5), per_channel=0.5), # change brightness of images (50-150% of original value)
iaa.ContrastNormalization((0.5, 2.0), per_channel=0.5), # improve or worsen the contrast
#iaa.Grayscale(alpha=(0.0, 1.0)),
#sometimes(iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25)), # move pixels locally around (with random strengths)
#sometimes(iaa.PiecewiseAffine(scale=(0.01, 0.05))) # sometimes move parts of the image around
],
random_order=True
)
],
random_order=True
)
return aug_pipe
示例6: medium
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import CoarseDropout [as 别名]
def medium(image_iteration):
iteration = image_iteration/(120*1.5)
frequency_factor = 0.05 + float(iteration)/1000000.0
color_factor = float(iteration)/1000000.0
dropout_factor = 0.198667 + (0.03856658 - 0.198667) / (1 + (iteration / 196416.6) ** 1.863486)
blur_factor = 0.5 + (0.5*iteration/100000.0)
add_factor = 10 + 10*iteration/150000.0
multiply_factor_pos = 1 + (2.5*iteration/500000.0)
multiply_factor_neg = 1 - (0.91 * iteration / 500000.0)
contrast_factor_pos = 1 + (0.5*iteration/500000.0)
contrast_factor_neg = 1 - (0.5 * iteration / 500000.0)
#print 'Augment Status ',frequency_factor,color_factor,dropout_factor,blur_factor,add_factor,\
# multiply_factor_pos,multiply_factor_neg,contrast_factor_pos,contrast_factor_neg
augmenter = iaa.Sequential([
iaa.Sometimes(frequency_factor, iaa.GaussianBlur((0, blur_factor))),
# blur images with a sigma between 0 and 1.5
iaa.Sometimes(frequency_factor, iaa.AdditiveGaussianNoise(loc=0, scale=(0.0,dropout_factor ),
per_channel=color_factor)),
# add gaussian noise to images
iaa.Sometimes(frequency_factor, iaa.CoarseDropout((0.0, dropout_factor), size_percent=(
0.08, 0.2), per_channel=color_factor)),
# randomly remove up to X% of the pixels
iaa.Sometimes(frequency_factor, iaa.Dropout((0.0, dropout_factor), per_channel=color_factor)),
# randomly remove up to X% of the pixels
iaa.Sometimes(frequency_factor,
iaa.Add((-add_factor, add_factor), per_channel=color_factor)),
# change brightness of images (by -X to Y of original value)
iaa.Sometimes(frequency_factor,
iaa.Multiply((multiply_factor_neg, multiply_factor_pos), per_channel=color_factor)),
# change brightness of images (X-Y% of original value)
iaa.Sometimes(frequency_factor, iaa.ContrastNormalization((contrast_factor_neg, contrast_factor_pos),
per_channel=color_factor)),
# improve or worsen the contrast
iaa.Sometimes(frequency_factor, iaa.Grayscale((0.0, 1))), # put grayscale
],
random_order=True # do all of the above in random order
)
return augmenter
示例7: soft
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import CoarseDropout [as 别名]
def soft(image_iteration):
iteration = image_iteration/(120*1.5)
frequency_factor = 0.05 + float(iteration)/1200000.0
color_factor = float(iteration)/1200000.0
dropout_factor = 0.198667 + (0.03856658 - 0.198667) / (1 + (iteration / 196416.6) ** 1.863486)
blur_factor = 0.5 + (0.5*iteration/120000.0)
add_factor = 10 + 10*iteration/170000.0
multiply_factor_pos = 1 + (2.5*iteration/800000.0)
multiply_factor_neg = 1 - (0.91 * iteration / 800000.0)
contrast_factor_pos = 1 + (0.5*iteration/800000.0)
contrast_factor_neg = 1 - (0.5 * iteration / 800000.0)
#print ('iteration',iteration,'Augment Status ',frequency_factor,color_factor,dropout_factor,blur_factor,add_factor,
# multiply_factor_pos,multiply_factor_neg,contrast_factor_pos,contrast_factor_neg)
augmenter = iaa.Sequential([
iaa.Sometimes(frequency_factor, iaa.GaussianBlur((0, blur_factor))),
# blur images with a sigma between 0 and 1.5
iaa.Sometimes(frequency_factor, iaa.AdditiveGaussianNoise(loc=0, scale=(0.0,dropout_factor ),
per_channel=color_factor)),
# add gaussian noise to images
iaa.Sometimes(frequency_factor, iaa.CoarseDropout((0.0, dropout_factor), size_percent=(
0.08, 0.2), per_channel=color_factor)),
# randomly remove up to X% of the pixels
iaa.Sometimes(frequency_factor, iaa.Dropout((0.0, dropout_factor), per_channel=color_factor)),
# randomly remove up to X% of the pixels
iaa.Sometimes(frequency_factor,
iaa.Add((-add_factor, add_factor), per_channel=color_factor)),
# change brightness of images (by -X to Y of original value)
iaa.Sometimes(frequency_factor,
iaa.Multiply((multiply_factor_neg, multiply_factor_pos), per_channel=color_factor)),
# change brightness of images (X-Y% of original value)
iaa.Sometimes(frequency_factor, iaa.ContrastNormalization((contrast_factor_neg, contrast_factor_pos),
per_channel=color_factor)),
# improve or worsen the contrast
iaa.Sometimes(frequency_factor, iaa.Grayscale((0.0, 1))), # put grayscale
],
random_order=True # do all of the above in random order
)
return augmenter
示例8: high
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import CoarseDropout [as 别名]
def high(image_iteration):
iteration = image_iteration/(120*1.5)
frequency_factor = 0.05 + float(iteration)/800000.0
color_factor = float(iteration)/800000.0
dropout_factor = 0.198667 + (0.03856658 - 0.198667) / (1 + (iteration / 196416.6) ** 1.863486)
blur_factor = 0.5 + (0.5*iteration/80000.0)
add_factor = 10 + 10*iteration/120000.0
multiply_factor_pos = 1 + (2.5*iteration/350000.0)
multiply_factor_neg = 1 - (0.91 * iteration / 400000.0)
contrast_factor_pos = 1 + (0.5*iteration/350000.0)
contrast_factor_neg = 1 - (0.5 * iteration / 400000.0)
#print ('iteration',iteration,'Augment Status ',frequency_factor,color_factor,dropout_factor,blur_factor,add_factor,
# multiply_factor_pos,multiply_factor_neg,contrast_factor_pos,contrast_factor_neg)
augmenter = iaa.Sequential([
iaa.Sometimes(frequency_factor, iaa.GaussianBlur((0, blur_factor))),
# blur images with a sigma between 0 and 1.5
iaa.Sometimes(frequency_factor, iaa.AdditiveGaussianNoise(loc=0, scale=(0.0,dropout_factor ),
per_channel=color_factor)),
# add gaussian noise to images
iaa.Sometimes(frequency_factor, iaa.CoarseDropout((0.0, dropout_factor), size_percent=(
0.08, 0.2), per_channel=color_factor)),
# randomly remove up to X% of the pixels
iaa.Sometimes(frequency_factor, iaa.Dropout((0.0, dropout_factor), per_channel=color_factor)),
# randomly remove up to X% of the pixels
iaa.Sometimes(frequency_factor,
iaa.Add((-add_factor, add_factor), per_channel=color_factor)),
# change brightness of images (by -X to Y of original value)
iaa.Sometimes(frequency_factor,
iaa.Multiply((multiply_factor_neg, multiply_factor_pos), per_channel=color_factor)),
# change brightness of images (X-Y% of original value)
iaa.Sometimes(frequency_factor, iaa.ContrastNormalization((contrast_factor_neg, contrast_factor_pos),
per_channel=color_factor)),
# improve or worsen the contrast
iaa.Sometimes(frequency_factor, iaa.Grayscale((0.0, 1))), # put grayscale
],
random_order=True # do all of the above in random order
)
return augmenter
示例9: medium_harder
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import CoarseDropout [as 别名]
def medium_harder(image_iteration):
iteration = image_iteration / 120
frequency_factor = 0.05 + float(iteration)/1000000.0
color_factor = float(iteration)/1000000.0
dropout_factor = 0.198667 + (0.03856658 - 0.198667) / (1 + (iteration / 196416.6) ** 1.863486)
blur_factor = 0.5 + (0.5*iteration/100000.0)
add_factor = 10 + 10*iteration/150000.0
multiply_factor_pos = 1 + (2.5*iteration/500000.0)
multiply_factor_neg = 1 - (0.91 * iteration / 500000.0)
contrast_factor_pos = 1 + (0.5*iteration/500000.0)
contrast_factor_neg = 1 - (0.5 * iteration / 500000.0)
#print 'Augment Status ',frequency_factor,color_factor,dropout_factor,blur_factor,add_factor,\
# multiply_factor_pos,multiply_factor_neg,contrast_factor_pos,contrast_factor_neg
augmenter = iaa.Sequential([
iaa.Sometimes(frequency_factor, iaa.GaussianBlur((0, blur_factor))),
# blur images with a sigma between 0 and 1.5
iaa.Sometimes(frequency_factor, iaa.AdditiveGaussianNoise(loc=0, scale=(0.0,dropout_factor ),
per_channel=color_factor)),
# add gaussian noise to images
iaa.Sometimes(frequency_factor, iaa.CoarseDropout((0.0, dropout_factor), size_percent=(
0.08, 0.2), per_channel=color_factor)),
# randomly remove up to X% of the pixels
iaa.Sometimes(frequency_factor, iaa.Dropout((0.0, dropout_factor), per_channel=color_factor)),
# randomly remove up to X% of the pixels
iaa.Sometimes(frequency_factor,
iaa.Add((-add_factor, add_factor), per_channel=color_factor)),
# change brightness of images (by -X to Y of original value)
iaa.Sometimes(frequency_factor,
iaa.Multiply((multiply_factor_neg, multiply_factor_pos), per_channel=color_factor)),
# change brightness of images (X-Y% of original value)
iaa.Sometimes(frequency_factor, iaa.ContrastNormalization((contrast_factor_neg, contrast_factor_pos),
per_channel=color_factor)),
# improve or worsen the contrast
iaa.Sometimes(frequency_factor, iaa.Grayscale((0.0, 1))), # put grayscale
],
random_order=True # do all of the above in random order
)
return augmenter
示例10: hard_harder
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import CoarseDropout [as 别名]
def hard_harder(image_iteration):
iteration = image_iteration / 120
frequency_factor = min(0.05 + float(iteration)/200000.0, 1.0)
color_factor = float(iteration)/1000000.0
dropout_factor = 0.198667 + (0.03856658 - 0.198667) / (1 + (iteration / 196416.6) ** 1.863486)
blur_factor = 0.5 + (0.5*iteration/100000.0)
add_factor = 10 + 10*iteration/100000.0
multiply_factor_pos = 1 + (2.5*iteration/200000.0)
multiply_factor_neg = 1 - (0.91 * iteration / 500000.0)
contrast_factor_pos = 1 + (0.5*iteration/500000.0)
contrast_factor_neg = 1 - (0.5 * iteration / 500000.0)
#print 'Augment Status ',frequency_factor,color_factor,dropout_factor,blur_factor,add_factor,\
# multiply_factor_pos,multiply_factor_neg,contrast_factor_pos,contrast_factor_neg
augmenter = iaa.Sequential([
iaa.Sometimes(frequency_factor, iaa.GaussianBlur((0, blur_factor))),
# blur images with a sigma between 0 and 1.5
iaa.Sometimes(frequency_factor, iaa.AdditiveGaussianNoise(loc=0, scale=(0.0,dropout_factor ),
per_channel=color_factor)),
# add gaussian noise to images
iaa.Sometimes(frequency_factor, iaa.CoarseDropout((0.0, dropout_factor), size_percent=(
0.08, 0.2), per_channel=color_factor)),
# randomly remove up to X% of the pixels
iaa.Sometimes(frequency_factor, iaa.Dropout((0.0, dropout_factor), per_channel=color_factor)),
# randomly remove up to X% of the pixels
iaa.Sometimes(frequency_factor,
iaa.Add((-add_factor, add_factor), per_channel=color_factor)),
# change brightness of images (by -X to Y of original value)
iaa.Sometimes(frequency_factor,
iaa.Multiply((multiply_factor_neg, multiply_factor_pos), per_channel=color_factor)),
# change brightness of images (X-Y% of original value)
iaa.Sometimes(frequency_factor, iaa.ContrastNormalization((contrast_factor_neg, contrast_factor_pos),
per_channel=color_factor)),
# improve or worsen the contrast
iaa.Sometimes(frequency_factor, iaa.Grayscale((0.0, 1))), # put grayscale
],
random_order=True # do all of the above in random order
)
return augmenter
示例11: build_augmentation_pipeline
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import CoarseDropout [as 别名]
def build_augmentation_pipeline(self, height=None, width=None, apply_prob=0.5):
sometimes = lambda aug: iaa.Sometimes(apply_prob, aug)
pipeline = iaa.Sequential(random_order=False)
cfg = self.cfg
if cfg.get("fliplr", False):
opt = cfg.get("fliplr", False)
if type(opt) == int:
pipeline.add(sometimes(iaa.Fliplr(opt)))
else:
pipeline.add(sometimes(iaa.Fliplr(0.5)))
if cfg.get("rotation", False):
opt = cfg.get("rotation", False)
if type(opt) == int:
pipeline.add(sometimes(iaa.Affine(rotate=(-opt, opt))))
else:
pipeline.add(sometimes(iaa.Affine(rotate=(-10, 10))))
if cfg.get("hist_eq", False):
pipeline.add(sometimes(iaa.AllChannelsHistogramEqualization()))
if cfg.get("motion_blur", False):
opts = cfg.get("motion_blur", False)
if type(opts) == list:
opts = dict(opts)
pipeline.add(sometimes(iaa.MotionBlur(**opts)))
else:
pipeline.add(sometimes(iaa.MotionBlur(k=7, angle=(-90, 90))))
if cfg.get("covering", False):
pipeline.add(
sometimes(iaa.CoarseDropout((0, 0.02), size_percent=(0.01, 0.05)))
) # , per_channel=0.5)))
if cfg.get("elastic_transform", False):
pipeline.add(sometimes(iaa.ElasticTransformation(sigma=5)))
if cfg.get("gaussian_noise", False):
opt = cfg.get("gaussian_noise", False)
if type(opt) == int or type(opt) == float:
pipeline.add(
sometimes(
iaa.AdditiveGaussianNoise(
loc=0, scale=(0.0, opt), per_channel=0.5
)
)
)
else:
pipeline.add(
sometimes(
iaa.AdditiveGaussianNoise(
loc=0, scale=(0.0, 0.05 * 255), per_channel=0.5
)
)
)
if height is not None and width is not None:
pipeline.add(
iaa.Sometimes(
cfg.cropratio, iaa.CropAndPad(percent=(-0.3, 0.1), keep_size=False)
)
)
pipeline.add(iaa.Resize({"height": height, "width": width}))
return pipeline
示例12: get_augmentations
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import CoarseDropout [as 别名]
def get_augmentations():
# applies the given augmenter in 50% of all cases,
sometimes = lambda aug: iaa.Sometimes(0.5, aug)
# Define our sequence of augmentation steps that will be applied to every image
seq = iaa.Sequential([
# execute 0 to 5 of the following (less important) augmenters per image
iaa.SomeOf((0, 5),
[
iaa.OneOf([
iaa.GaussianBlur((0, 3.0)),
iaa.AverageBlur(k=(2, 7)),
iaa.MedianBlur(k=(3, 11)),
]),
iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)),
iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)),
# search either for all edges or for directed edges,
# blend the result with the original image using a blobby mask
iaa.SimplexNoiseAlpha(iaa.OneOf([
iaa.EdgeDetect(alpha=(0.5, 1.0)),
iaa.DirectedEdgeDetect(alpha=(0.5, 1.0), direction=(0.0, 1.0)),
])),
iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5),
iaa.OneOf([
iaa.Dropout((0.01, 0.1), per_channel=0.5), # randomly remove up to 10% of the pixels
iaa.CoarseDropout((0.03, 0.15), size_percent=(0.02, 0.05), per_channel=0.2),
]),
iaa.Add((-10, 10), per_channel=0.5), # change brightness of images (by -10 to 10 of original value)
iaa.AddToHueAndSaturation((-20, 20)), # change hue and saturation
# either change the brightness of the whole image (sometimes
# per channel) or change the brightness of subareas
iaa.OneOf([
iaa.Multiply((0.5, 1.5), per_channel=0.5),
iaa.FrequencyNoiseAlpha(
exponent=(-4, 0),
first=iaa.Multiply((0.5, 1.5), per_channel=True),
second=iaa.ContrastNormalization((0.5, 2.0))
)
]),
iaa.ContrastNormalization((0.5, 2.0), per_channel=0.5), # improve or worsen the contrast
sometimes(iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25)), # move pixels locally around (with random strengths)
],
random_order=True
)
],
random_order=True
)
return seq
### data transforms
示例13: main
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import CoarseDropout [as 别名]
def main():
augseq = iaa.Sequential([
iaa.Fliplr(0.5),
iaa.CoarseDropout(p=0.1, size_percent=0.1)
])
print("------------------")
print("augseq.augment_batches(batches, background=True)")
print("------------------")
batches = list(load_images())
batches_aug = augseq.augment_batches(batches, background=True)
images_aug = []
keypoints_aug = []
for batch_aug in batches_aug:
images_aug.append(batch_aug.images_aug)
keypoints_aug.append(batch_aug.keypoints_aug)
misc.imshow(draw_grid(images_aug, keypoints_aug))
print("------------------")
print("augseq.augment_batches(batches, background=True) -> only images")
print("------------------")
batches = list(load_images())
batches = [batch.images for batch in batches]
batches_aug = augseq.augment_batches(batches, background=True)
images_aug = []
keypoints_aug = None
for batch_aug in batches_aug:
images_aug.append(batch_aug)
misc.imshow(draw_grid(images_aug, keypoints_aug))
print("------------------")
print("BackgroundAugmenter")
print("------------------")
batch_loader = ia.BatchLoader(load_images)
bg_augmenter = ia.BackgroundAugmenter(batch_loader, augseq)
images_aug = []
keypoints_aug = []
while True:
print("Next batch...")
batch = bg_augmenter.get_batch()
if batch is None:
print("Finished.")
break
images_aug.append(batch.images_aug)
keypoints_aug.append(batch.keypoints_aug)
misc.imshow(draw_grid(images_aug, keypoints_aug))