本文整理汇总了Python中imgaug.augmenters.AdditiveGaussianNoise方法的典型用法代码示例。如果您正苦于以下问题:Python augmenters.AdditiveGaussianNoise方法的具体用法?Python augmenters.AdditiveGaussianNoise怎么用?Python augmenters.AdditiveGaussianNoise使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类imgaug.augmenters
的用法示例。
在下文中一共展示了augmenters.AdditiveGaussianNoise方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import AdditiveGaussianNoise [as 别名]
def __init__(self, dataset_path,scale,k_fold_test=1, mode='train'):
super().__init__()
self.mode = mode
self.img_path=dataset_path+'/img'
self.mask_path=dataset_path+'/mask'
self.image_lists,self.label_lists=self.read_list(self.img_path,k_fold_test=k_fold_test)
self.flip =iaa.SomeOf((2,4),[
iaa.Fliplr(0.5),
iaa.Flipud(0.5),
iaa.Affine(rotate=(-30, 30)),
iaa.AdditiveGaussianNoise(scale=(0.0,0.08*255))], random_order=True)
# resize
self.resize_label = transforms.Resize(scale, Image.NEAREST)
self.resize_img = transforms.Resize(scale, Image.BILINEAR)
# normalization
self.to_tensor = transforms.ToTensor()
示例2: example_augment_images_and_keypoints
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import AdditiveGaussianNoise [as 别名]
def example_augment_images_and_keypoints():
print("Example: Augment Images and Keypoints")
import numpy as np
import imgaug.augmenters as iaa
images = np.zeros((2, 128, 128, 3), dtype=np.uint8) # two example images
images[:, 64, 64, :] = 255
points = [
[(10.5, 20.5)], # points on first image
[(50.5, 50.5), (60.5, 60.5), (70.5, 70.5)] # points on second image
]
seq = iaa.Sequential([
iaa.AdditiveGaussianNoise(scale=0.05*255),
iaa.Affine(translate_px={"x": (1, 5)})
])
# augment keypoints and images
images_aug, points_aug = seq(images=images, keypoints=points)
print("Image 1 center", np.argmax(images_aug[0, 64, 64:64+6, 0]))
print("Image 2 center", np.argmax(images_aug[1, 64, 64:64+6, 0]))
print("Points 1", points_aug[0])
print("Points 2", points_aug[1])
示例3: example_augment_images_and_bounding_boxes
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import AdditiveGaussianNoise [as 别名]
def example_augment_images_and_bounding_boxes():
print("Example: Augment Images and Bounding Boxes")
import numpy as np
import imgaug as ia
import imgaug.augmenters as iaa
images = np.zeros((2, 128, 128, 3), dtype=np.uint8) # two example images
images[:, 64, 64, :] = 255
bbs = [
[ia.BoundingBox(x1=10.5, y1=15.5, x2=30.5, y2=50.5)],
[ia.BoundingBox(x1=10.5, y1=20.5, x2=50.5, y2=50.5),
ia.BoundingBox(x1=40.5, y1=75.5, x2=70.5, y2=100.5)]
]
seq = iaa.Sequential([
iaa.AdditiveGaussianNoise(scale=0.05*255),
iaa.Affine(translate_px={"x": (1, 5)})
])
images_aug, bbs_aug = seq(images=images, bounding_boxes=bbs)
示例4: example_augment_images_and_polygons
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import AdditiveGaussianNoise [as 别名]
def example_augment_images_and_polygons():
print("Example: Augment Images and Polygons")
import numpy as np
import imgaug as ia
import imgaug.augmenters as iaa
images = np.zeros((2, 128, 128, 3), dtype=np.uint8) # two example images
images[:, 64, 64, :] = 255
polygons = [
[ia.Polygon([(10.5, 10.5), (50.5, 10.5), (50.5, 50.5)])],
[ia.Polygon([(0.0, 64.5), (64.5, 0.0), (128.0, 128.0), (64.5, 128.0)])]
]
seq = iaa.Sequential([
iaa.AdditiveGaussianNoise(scale=0.05*255),
iaa.Affine(translate_px={"x": (1, 5)})
])
images_aug, polygons_aug = seq(images=images, polygons=polygons)
示例5: example_augment_images_and_linestrings
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import AdditiveGaussianNoise [as 别名]
def example_augment_images_and_linestrings():
print("Example: Augment Images and LineStrings")
import numpy as np
import imgaug as ia
import imgaug.augmenters as iaa
images = np.zeros((2, 128, 128, 3), dtype=np.uint8) # two example images
images[:, 64, 64, :] = 255
ls = [
[ia.LineString([(10.5, 10.5), (50.5, 10.5), (50.5, 50.5)])],
[ia.LineString([(0.0, 64.5), (64.5, 0.0), (128.0, 128.0), (64.5, 128.0),
(128.0, 0.0)])]
]
seq = iaa.Sequential([
iaa.AdditiveGaussianNoise(scale=0.05*255),
iaa.Affine(translate_px={"x": (1, 5)})
])
images_aug, ls_aug = seq(images=images, line_strings=ls)
示例6: test_seed_affects_augmenters_created_before_its_call
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import AdditiveGaussianNoise [as 别名]
def test_seed_affects_augmenters_created_before_its_call(self):
image = np.full((50, 50, 3), 128, dtype=np.uint8)
images_aug = []
for _ in np.arange(5):
aug = iaa.AdditiveGaussianNoise(scale=50, per_channel=True)
iarandom.seed(100)
images_aug.append(aug(image=image))
# assert all images identical
for other_image_aug in images_aug[1:]:
assert np.array_equal(images_aug[0], other_image_aug)
# but different seed must lead to different image
aug = iaa.AdditiveGaussianNoise(scale=50, per_channel=True)
iarandom.seed(101)
image_aug = aug(image=image)
assert not np.array_equal(images_aug[0], image_aug)
示例7: __init__
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import AdditiveGaussianNoise [as 别名]
def __init__(self):
self.seq = iaa.Sequential([
iaa.Sometimes(0.5, iaa.OneOf([
iaa.GaussianBlur((0, 3.0)), # blur images with a sigma between 0 and 3.0
iaa.AverageBlur(k=(2, 7)), # blur image using local means with kernel sizes between 2 and 7
iaa.MedianBlur(k=(3, 11)), # blur image using local medians with kernel sizes between 2 and 7
])),
iaa.Sometimes(0.5, iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05 * 255), per_channel=0.5)),
iaa.Sometimes(0.5, iaa.Add((-10, 10), per_channel=0.5)),
iaa.Sometimes(0.5, iaa.AddToHueAndSaturation((-20, 20))),
iaa.Sometimes(0.5, iaa.FrequencyNoiseAlpha(
exponent=(-4, 0),
first=iaa.Multiply((0.5, 1.5), per_channel=True),
second=iaa.LinearContrast((0.5, 2.0))
)),
iaa.Sometimes(0.5, iaa.PiecewiseAffine(scale=(0.01, 0.05))),
iaa.Sometimes(0.5, iaa.PerspectiveTransform(scale=(0.01, 0.1)))
], random_order=True)
示例8: create_augmenter
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import AdditiveGaussianNoise [as 别名]
def create_augmenter(stage: str = "train"):
if stage == "train":
return iaa.Sequential([
iaa.Fliplr(0.5),
iaa.CropAndPad(px=(0, 112), sample_independently=False),
iaa.Affine(translate_percent={"x": (-0.4, 0.4), "y": (-0.4, 0.4)}),
iaa.SomeOf((0, 3), [
iaa.AddToHueAndSaturation((-10, 10)),
iaa.Affine(scale={"x": (0.9, 1.1), "y": (0.9, 1.1)}),
iaa.GaussianBlur(sigma=(0, 1.0)),
iaa.AdditiveGaussianNoise(scale=0.05 * 255)
])
])
elif stage == "val":
return iaa.Sequential([
iaa.CropAndPad(px=(0, 112), sample_independently=False),
iaa.Affine(translate_percent={"x": (-0.4, 0.4), "y": (-0.4, 0.4)}),
])
elif stage == "test":
return iaa.Sequential([])
示例9: amaugimg
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import AdditiveGaussianNoise [as 别名]
def amaugimg(image):
#数据增强
image = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)
seq = iaa.Sequential([
# iaa.Affine(rotate=(-5, 5),
# shear=(-5, 5),
# mode='edge'),
iaa.SomeOf((0, 2), #选择数据增强
[
iaa.GaussianBlur((0, 1.5)),
iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.01 * 255), per_channel=0.5),
# iaa.AddToHueAndSaturation((-5, 5)), # change hue and saturation
iaa.PiecewiseAffine(scale=(0.01, 0.03)),
iaa.PerspectiveTransform(scale=(0.01, 0.1))
],
random_order=True
)
])
image = seq.augment_image(image)
image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
return image
示例10: augment
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import AdditiveGaussianNoise [as 别名]
def augment(image, bbox):
x = random.randint(-50, 50)
y = random.randint(-50, 50)
aug = iaa.Sequential([iaa.Multiply(random.uniform(0.5, 1.5)),
iaa.AdditiveGaussianNoise(random.uniform(0.01, 0.1) * 255),
iaa.Affine(translate_px={"x": x, "y": y},
scale=random.uniform(0.5, 1.5),
rotate=random.uniform(-45, 45),
cval=(0, 255))])
bbs = ia.BoundingBoxesOnImage([ia.BoundingBox(x1=bbox[0], y1=bbox[1], x2=bbox[2], y2=bbox[3])], shape=image.shape)
aug = aug.to_deterministic()
image_aug = aug.augment_image(image)
bbs_aug = aug.augment_bounding_boxes([bbs])[0]
b = bbs_aug.bounding_boxes
bbs_aug = [b[0].x1, b[0].y1, b[0].x2, b[0].y2]
bbs_aug = np.asarray(bbs_aug)
bbs_aug[0] = bbs_aug[0] if bbs_aug[0] > 0 else 0
bbs_aug[1] = bbs_aug[1] if bbs_aug[1] > 0 else 0
bbs_aug[2] = bbs_aug[2] if bbs_aug[2] < size else size
bbs_aug[3] = bbs_aug[3] if bbs_aug[3] < size else size
return image_aug, bbs_aug
示例11: augment
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import AdditiveGaussianNoise [as 别名]
def augment(image, bbox):
x = random.randint(-60, 60)
y = random.randint(-60, 60)
aug = iaa.Sequential([iaa.AdditiveGaussianNoise(scale=random.uniform(.001, .01) * 255), # gaussian noise
iaa.Multiply(random.uniform(0.5, 1.5)), # brightness
iaa.Affine(translate_px={"x": x, "y": y}, # translation
scale=random.uniform(0.5, 1.5), # zoom in and out
rotate=random.uniform(-25, 25), # rotation
shear=random.uniform(-5, 5), # shear transformation
cval=(0, 255))]) # fill the empty space with color
aug.add(iaa.Salt(.001))
bbs = ia.BoundingBoxesOnImage([ia.BoundingBox(x1=bbox[0], y1=bbox[1], x2=bbox[2], y2=bbox[3])], shape=image.shape)
aug = aug.to_deterministic()
image_aug = aug.augment_image(image)
bbs_aug = aug.augment_bounding_boxes([bbs])[0]
b = bbs_aug.bounding_boxes
bbs_aug = [b[0].x1, b[0].y1, b[0].x2, b[0].y2]
bbs_aug = np.asarray(bbs_aug)
bbs_aug[0] = bbs_aug[0] if bbs_aug[0] > 0 else 0
bbs_aug[1] = bbs_aug[1] if bbs_aug[1] > 0 else 0
bbs_aug[2] = bbs_aug[2] if bbs_aug[2] < size else size
bbs_aug[3] = bbs_aug[3] if bbs_aug[3] < size else size
return image_aug, bbs_aug
示例12: noise
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import AdditiveGaussianNoise [as 别名]
def noise(image, prob, keys):
""" Adding noise """
aug = iaa.Sequential([iaa.Multiply(random.uniform(0.25, 1.5)),
iaa.AdditiveGaussianNoise(scale=0.05 * 255)])
seq_det = aug.to_deterministic()
image_aug = seq_det.augment_images([image])[0]
keys = ia.KeypointsOnImage([ia.Keypoint(x=keys[0], y=keys[1]),
ia.Keypoint(x=keys[2], y=keys[3]),
ia.Keypoint(x=keys[4], y=keys[5]),
ia.Keypoint(x=keys[6], y=keys[7]),
ia.Keypoint(x=keys[8], y=keys[9])], shape=image.shape)
keys_aug = seq_det.augment_keypoints([keys])[0]
k = keys_aug.keypoints
output = [k[0].x, k[0].y, k[1].x, k[1].y, k[2].x, k[2].y, k[3].x, k[3].y, k[4].x, k[4].y]
index = 0
for i in range(0, len(prob)):
output[index] = output[index] * prob[i]
output[index + 1] = output[index + 1] * prob[i]
index = index + 2
output = np.array(output)
return image_aug, output
示例13: chapter_augmenters_sequential
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import AdditiveGaussianNoise [as 别名]
def chapter_augmenters_sequential():
aug = iaa.Sequential([
iaa.Affine(translate_px={"x":-40}),
iaa.AdditiveGaussianNoise(scale=0.2*255)
])
run_and_save_augseq(
"sequential.jpg", aug,
[ia.quokka(size=(128, 128)) for _ in range(8)], cols=4, rows=2
)
aug = iaa.Sequential([
iaa.Affine(translate_px={"x":-40}),
iaa.AdditiveGaussianNoise(scale=0.2*255)
], random_order=True)
run_and_save_augseq(
"sequential_random_order.jpg", aug,
[ia.quokka(size=(128, 128)) for _ in range(8)], cols=4, rows=2
)
示例14: chapter_augmenters_additivegaussiannoise
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import AdditiveGaussianNoise [as 别名]
def chapter_augmenters_additivegaussiannoise():
aug = iaa.AdditiveGaussianNoise(scale=(0, 0.2*255))
run_and_save_augseq(
"additivegaussiannoise.jpg", aug,
[ia.quokka(size=(128, 128)) for _ in range(8)], cols=4, rows=2,
quality=90
)
aug = iaa.AdditiveGaussianNoise(scale=0.2*255)
run_and_save_augseq(
"additivegaussiannoise_large.jpg", aug,
[ia.quokka(size=(512, 512)) for _ in range(1)], cols=1, rows=1,
quality=90
)
aug = iaa.AdditiveGaussianNoise(scale=0.2*255, per_channel=True)
run_and_save_augseq(
"additivegaussiannoise_per_channel.jpg", aug,
[ia.quokka(size=(512, 512)) for _ in range(1)], cols=1, rows=1,
quality=90
)
示例15: __init__
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import AdditiveGaussianNoise [as 别名]
def __init__(self,data_dir, back_dir,
batch_size=50,gan=True,imsize=128,
res_x=640,res_y=480,
**kwargs):
'''
data_dir: Folder that contains cropped image+xyz
back_dir: Folder that contains random background images
batch_size: batch size for training
gan: if False, gt for GAN is not yielded
'''
self.data_dir = data_dir
self.back_dir = back_dir
self.imsize=imsize
self.batch_size = batch_size
self.gan = gan
self.backfiles = os.listdir(back_dir)
data_list = os.listdir(data_dir)
self.datafiles=[]
self.res_x=res_x
self.res_y=res_y
for file in data_list:
if(file.endswith(".npy")):
self.datafiles.append(file)
self.n_data = len(self.datafiles)
self.n_background = len(self.backfiles)
print("Total training views:", self.n_data)
self.seq_syn= iaa.Sequential([
iaa.WithChannels(0, iaa.Add((-15, 15))),
iaa.WithChannels(1, iaa.Add((-15, 15))),
iaa.WithChannels(2, iaa.Add((-15, 15))),
iaa.ContrastNormalization((0.8, 1.3)),
iaa.Multiply((0.8, 1.2),per_channel=0.5),
iaa.GaussianBlur(sigma=(0.0, 0.5)),
iaa.Sometimes(0.1, iaa.AdditiveGaussianNoise(scale=10, per_channel=True)),
iaa.Sometimes(0.5, iaa.ContrastNormalization((0.5, 2.2), per_channel=0.3)),
], random_order=True)