本文整理汇总了Python中imgaug.augmenters.Add方法的典型用法代码示例。如果您正苦于以下问题:Python augmenters.Add方法的具体用法?Python augmenters.Add怎么用?Python augmenters.Add使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类imgaug.augmenters
的用法示例。
在下文中一共展示了augmenters.Add方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: example_withchannels
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import Add [as 别名]
def example_withchannels():
print("Example: WithChannels")
import numpy as np
import imgaug.augmenters as iaa
# fake RGB images
images = np.random.randint(0, 255, (16, 128, 128, 3), dtype=np.uint8)
# add a random value from the range (-30, 30) to the first two channels of
# input images (e.g. to the R and G channels)
aug = iaa.WithChannels(
channels=[0, 1],
children=iaa.Add((-30, 30))
)
images_aug = aug(images=images)
示例2: main
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import Add [as 别名]
def main():
image = data.astronaut()
print("image shape:", image.shape)
aug = iaa.WithColorspace(
from_colorspace="RGB",
to_colorspace="HSV",
children=iaa.WithChannels(0, iaa.Add(50))
)
aug_no_colorspace = iaa.WithChannels(0, iaa.Add(50))
img_show = np.hstack([
image,
aug.augment_image(image),
aug_no_colorspace.augment_image(image)
])
ia.imshow(img_show)
示例3: test_images_factor_is_tuple
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import Add [as 别名]
def test_images_factor_is_tuple(self):
image = np.zeros((1, 2, 1), dtype=np.uint8)
nb_iterations = 1000
aug = iaa.BlendAlpha((0.0, 1.0), iaa.Add(10), iaa.Add(110))
values = []
for _ in sm.xrange(nb_iterations):
observed = aug.augment_image(image)
observed_val = np.round(np.average(observed)) - 10
values.append(observed_val / 100)
nb_bins = 5
hist, _ = np.histogram(values, bins=nb_bins, range=(0.0, 1.0),
density=False)
density_expected = 1.0/nb_bins
density_tolerance = 0.05
for nb_samples in hist:
density = nb_samples / nb_iterations
assert np.isclose(density, density_expected,
rtol=0, atol=density_tolerance)
示例4: test_images_float_as_per_channel_tuple_as_factor_two_branches
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import Add [as 别名]
def test_images_float_as_per_channel_tuple_as_factor_two_branches(self):
aug = iaa.BlendAlpha(
(0.0, 1.0),
iaa.Add(100),
iaa.Add(0),
per_channel=0.5)
seen = [0, 0]
for _ in sm.xrange(200):
observed = aug.augment_image(np.zeros((1, 1, 100), dtype=np.uint8))
uq = np.unique(observed)
if len(uq) == 1:
seen[0] += 1
elif len(uq) > 1:
seen[1] += 1
else:
assert False
assert 100 - 50 < seen[0] < 100 + 50
assert 100 - 50 < seen[1] < 100 + 50
示例5: test_unusual_channel_numbers
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import Add [as 别名]
def test_unusual_channel_numbers(self):
shapes = [
(1, 1, 4),
(1, 1, 5),
(1, 1, 512),
(1, 1, 513)
]
for shape in shapes:
with self.subTest(shape=shape):
image = np.full(shape, 0, dtype=np.uint8)
aug = iaa.BlendAlpha(1.0, iaa.Add(1), iaa.Add(100))
image_aug = aug(image=image)
assert np.all(image_aug == 1)
assert image_aug.dtype.name == "uint8"
assert image_aug.shape == shape
示例6: test_hooks_limiting_propagation
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import Add [as 别名]
def test_hooks_limiting_propagation(self):
aug = iaa.BlendAlphaElementwise(
0.5,
iaa.Add(100),
iaa.Add(50),
name="AlphaElementwiseTest")
def propagator(images, augmenter, parents, default):
if "AlphaElementwise" in augmenter.name:
return False
else:
return default
hooks = ia.HooksImages(propagator=propagator)
image = np.zeros((10, 10, 3), dtype=np.uint8) + 10
observed = aug.augment_image(image, hooks=hooks)
assert np.array_equal(observed, image)
示例7: test_zero_sized_axes
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import Add [as 别名]
def test_zero_sized_axes(self):
shapes = [
(0, 0),
(0, 1),
(1, 0),
(0, 1, 0),
(1, 0, 0),
(0, 1, 1),
(1, 0, 1)
]
for shape in shapes:
with self.subTest(shape=shape):
image = np.full(shape, 0, dtype=np.uint8)
aug = iaa.BlendAlpha(1.0, iaa.Add(1), iaa.Add(100))
image_aug = aug(image=image)
assert np.all(image_aug == 1)
assert image_aug.dtype.name == "uint8"
assert image_aug.shape == shape
示例8: test_pickleable
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import Add [as 别名]
def test_pickleable(self):
shape = (15, 15, 3)
iterations = 3
augmenter = iaa.BlendAlphaBoundingBoxes(
["bb1", "bb2", "bb3"],
foreground=iaa.Add((1, 10), seed=1),
background=iaa.Add((11, 20), seed=2),
nb_sample_labels=1,
seed=3)
image = np.mod(np.arange(int(np.prod(shape))), 256).astype(np.uint8)
image = image.reshape(shape)
bbs = [ia.BoundingBox(x1=1, y1=1, x2=5, y2=5, label="bb1"),
ia.BoundingBox(x1=-3, y1=4, x2=20, y2=8, label="bb2")]
augmenter_pkl = pickle.loads(pickle.dumps(augmenter, protocol=-1))
for _ in np.arange(iterations):
image_aug, bbs_aug = augmenter(
image=image, bounding_boxes=[bbs])
image_aug_pkl, bbs_aug_pkl = augmenter_pkl(
image=image, bounding_boxes=[bbs])
assert np.array_equal(image_aug, image_aug_pkl)
示例9: test_n
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import Add [as 别名]
def test_n(self, mock_main, mock_initial):
mock_main.return_value = [iaa.Add(1), iaa.Add(2), iaa.Add(4)]
mock_initial.return_value = []
img = np.zeros((1, 1, 3), dtype=np.uint8)
expected = {
0: [0],
1: [1, 2, 4],
2: [1+1, 1+2, 1+4, 2+2, 2+4, 4+4]
}
for n in [0, 1, 2]:
with self.subTest(n=n):
aug = iaa.RandAugment(n=n)
img_aug = aug(image=img)
assert img_aug[0, 0, 0] in expected[n]
# for some reason these mocks don't work with
# imgaug.augmenters.collections.(...)
示例10: __init__
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import Add [as 别名]
def __init__(self):
self.seq = iaa.Sequential([
iaa.Sometimes(0.5, iaa.OneOf([
iaa.GaussianBlur((0, 3.0)), # blur images with a sigma between 0 and 3.0
iaa.AverageBlur(k=(2, 7)), # blur image using local means with kernel sizes between 2 and 7
iaa.MedianBlur(k=(3, 11)), # blur image using local medians with kernel sizes between 2 and 7
])),
iaa.Sometimes(0.5, iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05 * 255), per_channel=0.5)),
iaa.Sometimes(0.5, iaa.Add((-10, 10), per_channel=0.5)),
iaa.Sometimes(0.5, iaa.AddToHueAndSaturation((-20, 20))),
iaa.Sometimes(0.5, iaa.FrequencyNoiseAlpha(
exponent=(-4, 0),
first=iaa.Multiply((0.5, 1.5), per_channel=True),
second=iaa.LinearContrast((0.5, 2.0))
)),
iaa.Sometimes(0.5, iaa.PiecewiseAffine(scale=(0.01, 0.05))),
iaa.Sometimes(0.5, iaa.PerspectiveTransform(scale=(0.01, 0.1)))
], random_order=True)
示例11: __init__
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import Add [as 别名]
def __init__(self, augmentation_rate):
self.augs = iaa.Sometimes(
augmentation_rate,
iaa.SomeOf(
(4, 7),
[
iaa.Affine(rotate=(-10, 10)),
iaa.Fliplr(0.2),
iaa.AverageBlur(k=(2, 10)),
iaa.Add((-10, 10), per_channel=0.5),
iaa.Multiply((0.75, 1.25), per_channel=0.5),
iaa.ContrastNormalization((0.5, 2.0), per_channel=0.5),
iaa.Crop(px=(0, 20))
],
random_order=True
)
)
示例12: main
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import Add [as 别名]
def main():
image = data.astronaut()
print("image shape:", image.shape)
aug = iaa.WithColorspace(
from_colorspace="RGB",
to_colorspace="HSV",
children=iaa.WithChannels(0, iaa.Add(50))
)
aug_no_colorspace = iaa.WithChannels(0, iaa.Add(50))
img_show = np.hstack([
image,
aug.augment_image(image),
aug_no_colorspace.augment_image(image)
])
misc.imshow(img_show)
示例13: example_withchannels
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import Add [as 别名]
def example_withchannels():
print("Example: WithChannels")
from imgaug import augmenters as iaa
import numpy as np
# fake RGB images
images = np.random.randint(0, 255, (16, 128, 128, 3), dtype=np.uint8)
# add a random value from the range (-30, 30) to the first two channels of
# input images (e.g. to the R and G channels)
aug = iaa.WithChannels(
channels=[0, 1],
children=iaa.Add((-30, 30))
)
images_aug = aug.augment_images(images)
示例14: __init__
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import Add [as 别名]
def __init__(self,data_dir, back_dir,
batch_size=50,gan=True,imsize=128,
res_x=640,res_y=480,
**kwargs):
'''
data_dir: Folder that contains cropped image+xyz
back_dir: Folder that contains random background images
batch_size: batch size for training
gan: if False, gt for GAN is not yielded
'''
self.data_dir = data_dir
self.back_dir = back_dir
self.imsize=imsize
self.batch_size = batch_size
self.gan = gan
self.backfiles = os.listdir(back_dir)
data_list = os.listdir(data_dir)
self.datafiles=[]
self.res_x=res_x
self.res_y=res_y
for file in data_list:
if(file.endswith(".npy")):
self.datafiles.append(file)
self.n_data = len(self.datafiles)
self.n_background = len(self.backfiles)
print("Total training views:", self.n_data)
self.seq_syn= iaa.Sequential([
iaa.WithChannels(0, iaa.Add((-15, 15))),
iaa.WithChannels(1, iaa.Add((-15, 15))),
iaa.WithChannels(2, iaa.Add((-15, 15))),
iaa.ContrastNormalization((0.8, 1.3)),
iaa.Multiply((0.8, 1.2),per_channel=0.5),
iaa.GaussianBlur(sigma=(0.0, 0.5)),
iaa.Sometimes(0.1, iaa.AdditiveGaussianNoise(scale=10, per_channel=True)),
iaa.Sometimes(0.5, iaa.ContrastNormalization((0.5, 2.2), per_channel=0.3)),
], random_order=True)
示例15: main
# 需要导入模块: from imgaug import augmenters [as 别名]
# 或者: from imgaug.augmenters import Add [as 别名]
def main():
image = ia.quokka_square(size=(128, 128))
images = []
for i in range(15):
aug = iaa.WithHueAndSaturation(iaa.WithChannels(0, iaa.Add(i*20)))
images.append(aug.augment_image(image))
for i in range(15):
aug = iaa.WithHueAndSaturation(iaa.WithChannels(1, iaa.Add(i*20)))
images.append(aug.augment_image(image))
ia.imshow(ia.draw_grid(images, rows=2))