本文整理汇总了Python中imgaug.HooksImages方法的典型用法代码示例。如果您正苦于以下问题:Python imgaug.HooksImages方法的具体用法?Python imgaug.HooksImages怎么用?Python imgaug.HooksImages使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类imgaug
的用法示例。
在下文中一共展示了imgaug.HooksImages方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_hooks_limiting_propagation
# 需要导入模块: import imgaug [as 别名]
# 或者: from imgaug import HooksImages [as 别名]
def test_hooks_limiting_propagation(self):
aug = iaa.BlendAlphaElementwise(
0.5,
iaa.Add(100),
iaa.Add(50),
name="AlphaElementwiseTest")
def propagator(images, augmenter, parents, default):
if "AlphaElementwise" in augmenter.name:
return False
else:
return default
hooks = ia.HooksImages(propagator=propagator)
image = np.zeros((10, 10, 3), dtype=np.uint8) + 10
observed = aug.augment_image(image, hooks=hooks)
assert np.array_equal(observed, image)
示例2: data_augment
# 需要导入模块: import imgaug [as 别名]
# 或者: from imgaug import HooksImages [as 别名]
def data_augment(self, image, mask, augmentation):
# Augmentation
# This requires the imgaug lib (https://github.com/aleju/imgaug)
if augmentation:
import imgaug
# Augmenters that are safe to apply to masks
# Some, such as Affine, have settings that make them unsafe, so always
# test your augmentation on masks
MASK_AUGMENTERS = ["Sequential", "SomeOf", "OneOf", "Sometimes",
"Fliplr", "Flipud", "CropAndPad",
"Affine", "PiecewiseAffine"]
def hook(images, augmenter, parents, default):
"""Determines which augmenters to apply to masks."""
return augmenter.__class__.__name__ in MASK_AUGMENTERS
# Store shapes before augmentation to compare
image_shape = image.shape
mask_shape = mask.shape
# Make augmenters deterministic to apply similarly to images and masks
det = augmentation.to_deterministic()
# image should be uint8!!
images = det.augment_image(image)
# Change mask to np.uint8 because imgaug doesn't support np.bool
masks = det.augment_image(mask.astype(np.uint8),
hooks=imgaug.HooksImages(activator=hook))
# Verify that shapes didn't change
assert images.shape == image_shape, "Augmentation shouldn't change image size"
assert masks.shape == mask_shape, "Augmentation shouldn't change mask size"
# Change mask back to bool
# masks = masks.astype(np.bool)
return image, mask
示例3: test_propagation_hooks_ctx
# 需要导入模块: import imgaug [as 别名]
# 或者: from imgaug import HooksImages [as 别名]
def test_propagation_hooks_ctx(self):
def propagator(images, augmenter, parents, default):
if ia.is_np_array(images):
return False
else:
return True
hooks = ia.HooksImages(propagator=propagator)
batch = _BatchInAugmentation(
images=np.zeros((3, 3, 4, 1), dtype=np.uint8),
keypoints=[
ia.KeypointsOnImage(
[ia.Keypoint(0, 0)],
shape=(3, 4, 1)
),
ia.KeypointsOnImage(
[ia.Keypoint(1, 1)],
shape=(3, 4, 1)
),
ia.KeypointsOnImage(
[ia.Keypoint(2, 2)],
shape=(3, 4, 1)
)
]
)
with batch.propagation_hooks_ctx(iaa.Identity(), hooks, []) \
as batch_prop:
assert batch_prop.images is None
assert batch_prop.keypoints is not None
assert len(batch_prop.keypoints) == 3
batch_prop.keypoints[0].keypoints[0].x = 10
assert batch.images is not None
assert batch.keypoints is not None
assert batch.keypoints[0].keypoints[0].x == 10
示例4: test_using_hooks_to_deactivate_propagation
# 需要导入模块: import imgaug [as 别名]
# 或者: from imgaug import HooksImages [as 别名]
def test_using_hooks_to_deactivate_propagation(self):
def _propagator(images, augmenter, parents, default):
return False if augmenter.name == "foo" else default
aug = iaa.WithBrightnessChannels(
children=iaa.Add(100),
to_colorspace=iaa.CSPACE_HSV,
name="foo")
image = np.arange(6*6*3).astype(np.uint8).reshape((6, 6, 3))
image_aug = aug(image=image,
hooks=ia.HooksImages(propagator=_propagator))
assert np.array_equal(image_aug, image)
示例5: example_hooks
# 需要导入模块: import imgaug [as 别名]
# 或者: from imgaug import HooksImages [as 别名]
def example_hooks():
print("Example: Hooks")
import imgaug as ia
from imgaug import augmenters as iaa
import numpy as np
# images and heatmaps, just arrays filled with value 30
images = np.ones((16, 128, 128, 3), dtype=np.uint8) * 30
heatmaps = np.ones((16, 128, 128, 21), dtype=np.uint8) * 30
# add vertical lines to see the effect of flip
images[:, 16:128-16, 120:124, :] = 120
heatmaps[:, 16:128-16, 120:124, :] = 120
seq = iaa.Sequential([
iaa.Fliplr(0.5, name="Flipper"),
iaa.GaussianBlur((0, 3.0), name="GaussianBlur"),
iaa.Dropout(0.02, name="Dropout"),
iaa.AdditiveGaussianNoise(scale=0.01*255, name="MyLittleNoise"),
iaa.AdditiveGaussianNoise(loc=32, scale=0.0001*255, name="SomeOtherNoise"),
iaa.Affine(translate_px={"x": (-40, 40)}, name="Affine")
])
# change the activated augmenters for heatmaps
def activator_heatmaps(images, augmenter, parents, default):
if augmenter.name in ["GaussianBlur", "Dropout", "MyLittleNoise"]:
return False
else:
# default value for all other augmenters
return default
hooks_heatmaps = ia.HooksImages(activator=activator_heatmaps)
seq_det = seq.to_deterministic() # call this for each batch again, NOT only once at the start
images_aug = seq_det.augment_images(images)
heatmaps_aug = seq_det.augment_images(heatmaps, hooks=hooks_heatmaps)
# -----------
ia.show_grid(images_aug)
ia.show_grid(heatmaps_aug[..., 0:3])
示例6: data_augment_volume
# 需要导入模块: import imgaug [as 别名]
# 或者: from imgaug import HooksImages [as 别名]
def data_augment_volume(self, *datalist , augmentation):
# first get the volume data from the data list
image1, image2, image3, mask1, mask2, mask3 = datalist
# Augmentation
# This requires the imgaug lib (https://github.com/aleju/imgaug)
if augmentation:
import imgaug
# Augmenters that are safe to apply to masks
# Some, such as Affine, have settings that make them unsafe, so always
# test your augmentation on masks
MASK_AUGMENTERS = ["Sequential", "SomeOf", "OneOf", "Sometimes",
"Fliplr", "Flipud", "CropAndPad",
"Affine", "PiecewiseAffine"]
def hook(images, augmenter, parents, default):
"""Determines which augmenters to apply to masks."""
return augmenter.__class__.__name__ in MASK_AUGMENTERS
# Store shapes before augmentation to compare
image1_shape = image1.shape
mask1_shape = mask1.shape
image2_shape = image2.shape
mask2_shape = mask2.shape
image3_shape = image3.shape
mask3_shape = mask3.shape
# Make augmenters deterministic to apply similarly to images and masks
det = augmentation.to_deterministic()
# image should be uint8!!
image1 = det.augment_image(image1)
image2 = det.augment_image(image2)
image3 = det.augment_image(image3)
# Change mask to np.uint8 because imgaug doesn't support np.bool
mask1 = det.augment_image(mask1.astype(np.uint8),
hooks=imgaug.HooksImages(activator=hook))
mask2 = det.augment_image(mask2.astype(np.uint8),
hooks=imgaug.HooksImages(activator=hook))
mask3 = det.augment_image(mask3.astype(np.uint8),
hooks=imgaug.HooksImages(activator=hook))
# Verify that shapes didn't change
assert image1.shape == image1_shape, "Augmentation shouldn't change image size"
assert mask1.shape == mask1_shape, "Augmentation shouldn't change mask size"
assert image2.shape == image2_shape, "Augmentation shouldn't change image size"
assert mask2.shape == mask2_shape, "Augmentation shouldn't change mask size"
assert image3.shape == image3_shape, "Augmentation shouldn't change image size"
assert mask3.shape == mask3_shape, "Augmentation shouldn't change mask size"
# Change mask back to bool
# masks = masks.astype(np.bool)
return image1,image2, image3, mask1, mask2, mask3
示例7: example_hooks
# 需要导入模块: import imgaug [as 别名]
# 或者: from imgaug import HooksImages [as 别名]
def example_hooks():
print("Example: Hooks")
import numpy as np
import imgaug as ia
import imgaug.augmenters as iaa
# Images and heatmaps, just arrays filled with value 30.
# We define the heatmaps here as uint8 arrays as we are going to feed them
# through the pipeline similar to normal images. In that way, every
# augmenter is applied to them.
images = np.full((16, 128, 128, 3), 30, dtype=np.uint8)
heatmaps = np.full((16, 128, 128, 21), 30, dtype=np.uint8)
# add vertical lines to see the effect of flip
images[:, 16:128-16, 120:124, :] = 120
heatmaps[:, 16:128-16, 120:124, :] = 120
seq = iaa.Sequential([
iaa.Fliplr(0.5, name="Flipper"),
iaa.GaussianBlur((0, 3.0), name="GaussianBlur"),
iaa.Dropout(0.02, name="Dropout"),
iaa.AdditiveGaussianNoise(scale=0.01*255, name="MyLittleNoise"),
iaa.AdditiveGaussianNoise(loc=32, scale=0.0001*255, name="SomeOtherNoise"),
iaa.Affine(translate_px={"x": (-40, 40)}, name="Affine")
])
# change the activated augmenters for heatmaps,
# we only want to execute horizontal flip, affine transformation and one of
# the gaussian noises
def activator_heatmaps(images, augmenter, parents, default):
if augmenter.name in ["GaussianBlur", "Dropout", "MyLittleNoise"]:
return False
else:
# default value for all other augmenters
return default
hooks_heatmaps = ia.HooksImages(activator=activator_heatmaps)
# call to_deterministic() once per batch, NOT only once at the start
seq_det = seq.to_deterministic()
images_aug = seq_det(images=images)
heatmaps_aug = seq_det(images=heatmaps, hooks=hooks_heatmaps)
# -----------
ia.show_grid(images_aug)
ia.show_grid(heatmaps_aug[..., 0:3])