本文整理汇总了Python中imagenet_utils.preprocess_input方法的典型用法代码示例。如果您正苦于以下问题:Python imagenet_utils.preprocess_input方法的具体用法?Python imagenet_utils.preprocess_input怎么用?Python imagenet_utils.preprocess_input使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类imagenet_utils
的用法示例。
在下文中一共展示了imagenet_utils.preprocess_input方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: predict
# 需要导入模块: import imagenet_utils [as 别名]
# 或者: from imagenet_utils import preprocess_input [as 别名]
def predict(filename):
assert os.path.isfile(filename) and 'cannot find file'
model = ResNet50(weights='imagenet')
img = image.load_img(filename, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
preds = decode_predictions(model.predict(x))
if len(preds) == 0:
return None
return preds[0][0][1]
##################################
# main
##################################
示例2: predict
# 需要导入模块: import imagenet_utils [as 别名]
# 或者: from imagenet_utils import preprocess_input [as 别名]
def predict(filename):
assert os.path.isfile(filename) and 'cannot find file'
model = ResNet50(weights='imagenet')
img = image.load_img(filename, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
preds = decode_predictions(model.predict(x))
if len(preds) == 0:
return None
return preds[0][0][1]
##################################
# config
##################################
示例3: compute_VGG19_features
# 需要导入模块: import imagenet_utils [as 别名]
# 或者: from imagenet_utils import preprocess_input [as 别名]
def compute_VGG19_features(keras_model_path, size, batch_size=32):
sys.path.append(keras_model_path)
from vgg19 import VGG19
from imagenet_utils import preprocess_input
from keras.models import Model
# Load data
hdf5_file = os.path.join(data_dir, "lfw_%s_data.h5" % size)
with h5py.File(hdf5_file, "a") as hf:
X = hf["data"][:].astype(np.float32)
X = preprocess_input(X)
base_model = VGG19(weights='imagenet', include_top=False)
list_output = ["block3_conv1", "block4_conv1", "block5_conv1"]
list_output = [base_model.get_layer(l).output for l in list_output]
model = Model(input=base_model.input, output=list_output)
vgg19_feat = model.predict(X, batch_size=batch_size, verbose=True)
for i in range(len(vgg19_feat)):
hf.create_dataset("data_VGG_%s" % str(i), data=vgg19_feat[i])
示例4: predict
# 需要导入模块: import imagenet_utils [as 别名]
# 或者: from imagenet_utils import preprocess_input [as 别名]
def predict(self, frame):
image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB).astype(np.float32)
image = image.transpose((2, 0, 1))
image = image.reshape((1,) + image.shape)
image = preprocess_input(image)
preds = self.model.predict(image)
return decode_predictions(preds)[0]
示例5: predict
# 需要导入模块: import imagenet_utils [as 别名]
# 或者: from imagenet_utils import preprocess_input [as 别名]
def predict(path, model_path, index_file_path, MainUI):
try:
result_string = " Detected Object : Probability \n \n"
# Making check to load Model
if (MainUI.resnet_model_loaded == False):
wx.CallAfter(pub.sendMessage, "report101", message="Loading ResNet model for the first time. This may take a few minutes or less than a minute. Please wait. \nLoading.....")
model = ResNet50(include_top=True, weights="imagenet", model_path=model_path)
wx.CallAfter(pub.sendMessage, "report101", message="ResNet model loaded.. Picture about to be processed.. \nLoading......")
MainUI.model_collection_resnet.append(model) # Loading model if not loaded yet
MainUI.resnet_model_loaded = True
else:
wx.CallAfter(pub.sendMessage, "report101", message="Retrieving loaded model. \nLoading........")
model = MainUI.model_collection_resnet[0] # Getting Model from model array if loaded before
wx.CallAfter(pub.sendMessage, "report101", message="ResNet model loaded.. Picture about to be processed.. \nLoading......")
# Image prediction processing
target_image = image.load_img(path, grayscale=False, target_size=(224, 224))
target_image = image.img_to_array(target_image, data_format="channels_last")
target_image = np.expand_dims(target_image, axis=0)
target_image = preprocess_input(target_image, data_format="channels_last")
wx.CallAfter(pub.sendMessage, "report101", message="Picture is transformed for prediction. \nLoading........")
prediction = model.predict(x=target_image, steps=1)
wx.CallAfter(pub.sendMessage, "report101", message="Picture prediction is done. Sending in results. \nLoading......")
# Retrieving prediction result and sending it back to the thread
prediction_result = decode_predictions(prediction, top=10, index_file_path=index_file_path)
for results in prediction_result:
countdown = 0
for result in results:
countdown += 1
result_string += "(" + str(countdown) + ") " + str(result[1]) + " : " + str(100 * result[2])[
0:4] + "% \n"
return result_string
except Exception as e:
return getattr(e, "message", repr(e))
示例6: encodings
# 需要导入模块: import imagenet_utils [as 别名]
# 或者: from imagenet_utils import preprocess_input [as 别名]
def encodings(model, path):
processed_img = image.load_img(path, target_size=(224,224))
x = image.img_to_array(processed_img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
image_final = np.asarray(x)
prediction = model.predict(image_final)
prediction = np.reshape(prediction, prediction.shape[1])
return prediction
示例7: predict
# 需要导入模块: import imagenet_utils [as 别名]
# 或者: from imagenet_utils import preprocess_input [as 别名]
def predict(path, model_path, index_file_path, MainUI):
try:
result_string = " Detected Object : Probability \n \n"
if (MainUI.squeezenet_model_loaded == False):
wx.CallAfter(pub.sendMessage, "report101",
message="Loading SqueezeNet model for the first time. This may take few minutes or less than a minute. Please wait. \nLoading.....")
model = SqueezeNet(model_path=model_path)
wx.CallAfter(pub.sendMessage, "report101",
message="SqueezeNet model loaded.. Picture about to be processed.. \nLoading......")
MainUI.model_collection_squeezenet.append(model)
MainUI.squeezenet_model_loaded = True
else:
wx.CallAfter(pub.sendMessage, "report101", message="Retrieving loaded model. \nLoading........")
model = MainUI.model_collection_squeezenet[0]
wx.CallAfter(pub.sendMessage, "report101",
message="ResNet model loaded.. Picture about to be processed.. \nLoading......")
img = image.load_img(path, target_size=(227, 227))
img = image.img_to_array(img, data_format="channels_last")
img = np.expand_dims(img, axis=0)
img = preprocess_input(img, data_format="channels_last")
wx.CallAfter(pub.sendMessage, "report101", message="Picture is transformed for prediction. \nLoading........")
prediction = model.predict(img, steps=1)
wx.CallAfter(pub.sendMessage, "report101",
message="Picture prediction is done. Sending in results. \nLoading......")
predictiondata = decode_predictions(prediction, top=10, index_file_path=index_file_path)
for results in predictiondata:
countdown = 0
for result in results:
countdown += 1
result_string += "(" + str(countdown) + ") " + str(result[1]) + " : " + str(100 * result[2])[
0:4] + "% \n"
return result_string
except Exception as e:
return getattr(e, "message", repr(e))