本文整理汇总了Python中ignite.engine.create_supervised_trainer方法的典型用法代码示例。如果您正苦于以下问题:Python engine.create_supervised_trainer方法的具体用法?Python engine.create_supervised_trainer怎么用?Python engine.create_supervised_trainer使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类ignite.engine
的用法示例。
在下文中一共展示了engine.create_supervised_trainer方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: run_test
# 需要导入模块: from ignite import engine [as 别名]
# 或者: from ignite.engine import create_supervised_trainer [as 别名]
def run_test(batch_size=64, train_steps=100, device=torch.device("cuda:0")):
class _TestBatch(Dataset):
def __getitem__(self, _unused_id):
im, seg = create_test_image_2d(128, 128, noise_max=1, num_objs=4, num_seg_classes=1)
return im[None], seg[None].astype(np.float32)
def __len__(self):
return train_steps
net = UNet(
dimensions=2, in_channels=1, out_channels=1, channels=(4, 8, 16, 32), strides=(2, 2, 2), num_res_units=2
).to(device)
loss = DiceLoss(sigmoid=True)
opt = torch.optim.Adam(net.parameters(), 1e-4)
src = DataLoader(_TestBatch(), batch_size=batch_size)
trainer = create_supervised_trainer(net, opt, loss, device, False)
trainer.run(src, 1)
loss = trainer.state.output
return loss
示例2: test_ignite
# 需要导入模块: from ignite import engine [as 别名]
# 或者: from ignite.engine import create_supervised_trainer [as 别名]
def test_ignite():
callback = PlotLossesIgnite(outputs=(CheckOutput(), ))
model = Model()
optimizer = optim.Adam(params=model.parameters(), lr=0.001)
loss_fn = nn.CrossEntropyLoss()
trainer = engine.create_supervised_trainer(
model, optimizer, loss_fn, output_transform=lambda x, y, y_pred, loss: {'loss': loss.item()}
)
losses = []
@trainer.on(engine.Events.ITERATION_COMPLETED)
def _save_losses(engine):
losses.append(engine.state.output['loss'])
@trainer.on(engine.Events.EPOCH_COMPLETED)
def _compute_epoch_loss(engine):
engine.state.metrics = {'loss': sum(losses) / len(losses)}
callback.attach(trainer)
train_dataloader = get_random_data()
trainer.run(train_dataloader, max_epochs=2)
示例3: objective
# 需要导入模块: from ignite import engine [as 别名]
# 或者: from ignite.engine import create_supervised_trainer [as 别名]
def objective(trial):
# Create a convolutional neural network.
model = Net(trial)
device = "cpu"
if torch.cuda.is_available():
device = "cuda"
model.cuda(device)
optimizer = Adam(model.parameters())
trainer = create_supervised_trainer(model, optimizer, F.nll_loss, device=device)
evaluator = create_supervised_evaluator(model, metrics={"accuracy": Accuracy()}, device=device)
# Register a pruning handler to the evaluator.
pruning_handler = optuna.integration.PyTorchIgnitePruningHandler(trial, "accuracy", trainer)
evaluator.add_event_handler(Events.COMPLETED, pruning_handler)
# Load MNIST dataset.
train_loader, val_loader = get_data_loaders(TRAIN_BATCH_SIZE, VAL_BATCH_SIZE)
@trainer.on(Events.EPOCH_COMPLETED)
def log_results(engine):
evaluator.run(val_loader)
validation_acc = evaluator.state.metrics["accuracy"]
print("Epoch: {} Validation accuracy: {:.2f}".format(engine.state.epoch, validation_acc))
trainer.run(train_loader, max_epochs=EPOCHS)
evaluator.run(val_loader)
return evaluator.state.metrics["accuracy"]
示例4: _test_create_supervised_trainer
# 需要导入模块: from ignite import engine [as 别名]
# 或者: from ignite.engine import create_supervised_trainer [as 别名]
def _test_create_supervised_trainer(
model_device: Optional[str] = None, trainer_device: Optional[str] = None, trace: bool = False
):
model = Linear(1, 1)
if model_device:
model.to(model_device)
model.weight.data.zero_()
model.bias.data.zero_()
optimizer = SGD(model.parameters(), 0.1)
if trace:
example_input = torch.randn(1, 1)
model = torch.jit.trace(model, example_input)
trainer = create_supervised_trainer(model, optimizer, mse_loss, device=trainer_device)
x = torch.tensor([[1.0], [2.0]])
y = torch.tensor([[3.0], [5.0]])
data = [(x, y)]
assert model.weight.data[0, 0].item() == approx(0.0)
assert model.bias.item() == approx(0.0)
if model_device == trainer_device or ((model_device == "cpu") ^ (trainer_device == "cpu")):
state = trainer.run(data)
assert state.output == approx(17.0)
assert model.weight.data[0, 0].item() == approx(1.3)
assert model.bias.item() == approx(0.8)
else:
with pytest.raises(RuntimeError, match=r"device type"):
trainer.run(data)
示例5: dummy_engine
# 需要导入模块: from ignite import engine [as 别名]
# 或者: from ignite.engine import create_supervised_trainer [as 别名]
def dummy_engine(model, optimizer):
engine = create_supervised_trainer(model, optimizer, nn.MSELoss())
yield engine
示例6: train
# 需要导入模块: from ignite import engine [as 别名]
# 或者: from ignite.engine import create_supervised_trainer [as 别名]
def train():
writer = SummaryWriter()
net, optimiser, lr_scheduler, train_loader, val_loader = cifar10_experiment()
# Pre-training pruning using SKIP
keep_masks = SNIP(net, 0.05, train_loader, device) # TODO: shuffle?
apply_prune_mask(net, keep_masks)
trainer = create_supervised_trainer(net, optimiser, F.nll_loss, device)
evaluator = create_supervised_evaluator(net, {
'accuracy': Accuracy(),
'nll': Loss(F.nll_loss)
}, device)
pbar = ProgressBar()
pbar.attach(trainer)
@trainer.on(Events.ITERATION_COMPLETED)
def log_training_loss(engine):
lr_scheduler.step()
iter_in_epoch = (engine.state.iteration - 1) % len(train_loader) + 1
if engine.state.iteration % LOG_INTERVAL == 0:
# pbar.log_message("Epoch[{}] Iteration[{}/{}] Loss: {:.2f}"
# "".format(engine.state.epoch, iter_in_epoch, len(train_loader), engine.state.output))
writer.add_scalar("training/loss", engine.state.output,
engine.state.iteration)
@trainer.on(Events.EPOCH_COMPLETED)
def log_epoch(engine):
evaluator.run(val_loader)
metrics = evaluator.state.metrics
avg_accuracy = metrics['accuracy']
avg_nll = metrics['nll']
# pbar.log_message("Validation Results - Epoch: {} Avg accuracy: {:.2f} Avg loss: {:.2f}"
# .format(engine.state.epoch, avg_accuracy, avg_nll))
writer.add_scalar("validation/loss", avg_nll, engine.state.iteration)
writer.add_scalar("validation/accuracy", avg_accuracy,
engine.state.iteration)
trainer.run(train_loader, EPOCHS)
# Let's look at the final weights
# for name, param in net.named_parameters():
# if name.endswith('weight'):
# writer.add_histogram(name, param)
writer.close()
示例7: run
# 需要导入模块: from ignite import engine [as 别名]
# 或者: from ignite.engine import create_supervised_trainer [as 别名]
def run(train_batch_size, val_batch_size, epochs, lr, momentum, log_interval, log_dir):
train_loader, val_loader = get_data_loaders(train_batch_size, val_batch_size)
model = Net()
writer = SummaryWriter(log_dir=log_dir)
device = "cpu"
if torch.cuda.is_available():
device = "cuda"
model.to(device) # Move model before creating optimizer
optimizer = SGD(model.parameters(), lr=lr, momentum=momentum)
criterion = nn.NLLLoss()
trainer = create_supervised_trainer(model, optimizer, criterion, device=device)
val_metrics = {"accuracy": Accuracy(), "nll": Loss(criterion)}
evaluator = create_supervised_evaluator(model, metrics=val_metrics, device=device)
@trainer.on(Events.ITERATION_COMPLETED(every=log_interval))
def log_training_loss(engine):
print(
"Epoch[{}] Iteration[{}/{}] Loss: {:.2f}"
"".format(engine.state.epoch, engine.state.iteration, len(train_loader), engine.state.output)
)
writer.add_scalar("training/loss", engine.state.output, engine.state.iteration)
@trainer.on(Events.EPOCH_COMPLETED)
def log_training_results(engine):
evaluator.run(train_loader)
metrics = evaluator.state.metrics
avg_accuracy = metrics["accuracy"]
avg_nll = metrics["nll"]
print(
"Training Results - Epoch: {} Avg accuracy: {:.2f} Avg loss: {:.2f}".format(
engine.state.epoch, avg_accuracy, avg_nll
)
)
writer.add_scalar("training/avg_loss", avg_nll, engine.state.epoch)
writer.add_scalar("training/avg_accuracy", avg_accuracy, engine.state.epoch)
@trainer.on(Events.EPOCH_COMPLETED)
def log_validation_results(engine):
evaluator.run(val_loader)
metrics = evaluator.state.metrics
avg_accuracy = metrics["accuracy"]
avg_nll = metrics["nll"]
print(
"Validation Results - Epoch: {} Avg accuracy: {:.2f} Avg loss: {:.2f}".format(
engine.state.epoch, avg_accuracy, avg_nll
)
)
writer.add_scalar("valdation/avg_loss", avg_nll, engine.state.epoch)
writer.add_scalar("valdation/avg_accuracy", avg_accuracy, engine.state.epoch)
# kick everything off
trainer.run(train_loader, max_epochs=epochs)
writer.close()
示例8: run
# 需要导入模块: from ignite import engine [as 别名]
# 或者: from ignite.engine import create_supervised_trainer [as 别名]
def run(train_batch_size, val_batch_size, epochs, lr, momentum, log_interval):
train_loader, val_loader = get_data_loaders(train_batch_size, val_batch_size)
model = Net()
device = "cpu"
if torch.cuda.is_available():
device = "cuda"
model.to(device) # Move model before creating optimizer
optimizer = SGD(model.parameters(), lr=lr, momentum=momentum)
criterion = nn.NLLLoss()
trainer = create_supervised_trainer(model, optimizer, criterion, device=device)
trainer.logger = setup_logger("trainer")
val_metrics = {"accuracy": Accuracy(), "nll": Loss(criterion)}
evaluator = create_supervised_evaluator(model, metrics=val_metrics, device=device)
evaluator.logger = setup_logger("evaluator")
desc = "ITERATION - loss: {:.2f}"
pbar = tqdm(initial=0, leave=False, total=len(train_loader), desc=desc.format(0))
@trainer.on(Events.ITERATION_COMPLETED(every=log_interval))
def log_training_loss(engine):
pbar.desc = desc.format(engine.state.output)
pbar.update(log_interval)
@trainer.on(Events.EPOCH_COMPLETED)
def log_training_results(engine):
pbar.refresh()
evaluator.run(train_loader)
metrics = evaluator.state.metrics
avg_accuracy = metrics["accuracy"]
avg_nll = metrics["nll"]
tqdm.write(
"Training Results - Epoch: {} Avg accuracy: {:.2f} Avg loss: {:.2f}".format(
engine.state.epoch, avg_accuracy, avg_nll
)
)
@trainer.on(Events.EPOCH_COMPLETED)
def log_validation_results(engine):
evaluator.run(val_loader)
metrics = evaluator.state.metrics
avg_accuracy = metrics["accuracy"]
avg_nll = metrics["nll"]
tqdm.write(
"Validation Results - Epoch: {} Avg accuracy: {:.2f} Avg loss: {:.2f}".format(
engine.state.epoch, avg_accuracy, avg_nll
)
)
pbar.n = pbar.last_print_n = 0
@trainer.on(Events.EPOCH_COMPLETED | Events.COMPLETED)
def log_time(engine):
tqdm.write(
"{} took {} seconds".format(trainer.last_event_name.name, trainer.state.times[trainer.last_event_name.name])
)
trainer.run(train_loader, max_epochs=epochs)
pbar.close()
示例9: run
# 需要导入模块: from ignite import engine [as 别名]
# 或者: from ignite.engine import create_supervised_trainer [as 别名]
def run(train_batch_size, val_batch_size, epochs, lr, momentum, display_gpu_info):
train_loader, val_loader = get_data_loaders(train_batch_size, val_batch_size)
model = Net()
device = "cpu"
if torch.cuda.is_available():
device = "cuda"
model.to(device) # Move model before creating optimizer
optimizer = SGD(model.parameters(), lr=lr, momentum=momentum)
trainer = create_supervised_trainer(model, optimizer, F.nll_loss, device=device)
evaluator = create_supervised_evaluator(
model, metrics={"accuracy": Accuracy(), "nll": Loss(F.nll_loss)}, device=device
)
RunningAverage(output_transform=lambda x: x).attach(trainer, "loss")
if display_gpu_info:
from ignite.contrib.metrics import GpuInfo
GpuInfo().attach(trainer, name="gpu")
pbar = ProgressBar(persist=True)
pbar.attach(trainer, metric_names="all")
@trainer.on(Events.EPOCH_COMPLETED)
def log_training_results(engine):
evaluator.run(train_loader)
metrics = evaluator.state.metrics
avg_accuracy = metrics["accuracy"]
avg_nll = metrics["nll"]
pbar.log_message(
"Training Results - Epoch: {} Avg accuracy: {:.2f} Avg loss: {:.2f}".format(
engine.state.epoch, avg_accuracy, avg_nll
)
)
@trainer.on(Events.EPOCH_COMPLETED)
def log_validation_results(engine):
evaluator.run(val_loader)
metrics = evaluator.state.metrics
avg_accuracy = metrics["accuracy"]
avg_nll = metrics["nll"]
pbar.log_message(
"Validation Results - Epoch: {} Avg accuracy: {:.2f} Avg loss: {:.2f}".format(
engine.state.epoch, avg_accuracy, avg_nll
)
)
pbar.n = pbar.last_print_n = 0
trainer.run(train_loader, max_epochs=epochs)