本文整理汇总了Python中hyperopt.tpe.suggest方法的典型用法代码示例。如果您正苦于以下问题:Python tpe.suggest方法的具体用法?Python tpe.suggest怎么用?Python tpe.suggest使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类hyperopt.tpe
的用法示例。
在下文中一共展示了tpe.suggest方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_compilefn_train_test_split
# 需要导入模块: from hyperopt import tpe [as 别名]
# 或者: from hyperopt.tpe import suggest [as 别名]
def test_compilefn_train_test_split(tmpdir):
db_name = "test"
exp_name = "test2"
fn = CompileFN(db_name, exp_name,
data_fn=data.data,
model_fn=model.build_model,
optim_metric="acc",
optim_metric_mode="max",
# eval
valid_split=.5,
stratified=False,
random_state=True,
save_dir="/tmp/")
hyper_params = {
"data": {},
"shared": {"max_features": 100, "maxlen": 20},
"model": {"filters": hp.choice("m_filters", (2, 5)),
"hidden_dims": 3,
},
"fit": {"epochs": 1}
}
fn_test(fn, hyper_params, tmp_dir=str(tmpdir))
trials = Trials()
best = fmin(fn, hyper_params, trials=trials, algo=tpe.suggest, max_evals=2)
assert isinstance(best, dict)
示例2: optimize_hyperparam
# 需要导入模块: from hyperopt import tpe [as 别名]
# 或者: from hyperopt.tpe import suggest [as 别名]
def optimize_hyperparam(self, X, y, test_size=.2, n_eval=100):
X_trn, X_val, y_trn, y_val = train_test_split(X, y, test_size=test_size, shuffle=self.shuffle)
def objective(hyperparams):
model = XGBModel(n_estimators=self.n_est, **self.params, **hyperparams)
model.fit(X=X_trn, y=y_trn,
eval_set=[(X_val, y_val)],
eval_metric=self.metric,
early_stopping_rounds=self.n_stop,
verbose=False)
score = model.evals_result()['validation_0'][self.metric][model.best_iteration] * self.loss_sign
return {'loss': score, 'status': STATUS_OK, 'model': model}
trials = Trials()
best = hyperopt.fmin(fn=objective, space=self.space, trials=trials,
algo=tpe.suggest, max_evals=n_eval, verbose=1,
rstate=self.random_state)
hyperparams = space_eval(self.space, best)
return hyperparams, trials
示例3: __init__
# 需要导入模块: from hyperopt import tpe [as 别名]
# 或者: from hyperopt.tpe import suggest [as 别名]
def __init__(
self,
logging_queue: multiprocessing.Queue,
queue: multiprocessing.Queue,
objective_hyperopt: Callable,
exp_key: str,
space: dict,
algo: Callable = tpe.suggest,
max_evals: int = 100,
fmin_timer: float = None,
mongo_url: str = "localhost:1234/scvi_db",
):
super().__init__(name="Fmin Launcher")
self.logging_queue = logging_queue
self.queue = queue
self.objective_hyperopt = objective_hyperopt
self.exp_key = exp_key
self.space = space
self.algo = algo
self.max_evals = max_evals
self.fmin_timer = fmin_timer
self.mongo_url = mongo_url
示例4: optimize
# 需要导入模块: from hyperopt import tpe [as 别名]
# 或者: from hyperopt.tpe import suggest [as 别名]
def optimize(self):
"""Function that performs bayesian optimization"""
trials = Trials()
self._best_result = fmin(fn=self._get_loss, space=self.search_space, trials=trials,
algo=tpe.suggest, max_evals=self.max_evals)
columns = list(self.search_space.keys())
results = pd.DataFrame(columns=['iteration'] + columns + ['loss'])
for idx, trial in enumerate(trials.trials):
row = [idx]
translated_eval = space_eval(self.search_space, {k: v[0] for k, v in trial['misc']['vals'].items()})
for k in columns:
row.append(translated_eval[k])
row.append(trial['result']['loss'])
results.loc[idx] = row
path = self.config_local.path_result / self.model_name
path.mkdir(parents=True, exist_ok=True)
results.to_csv(str(path / "trials.csv"), index=False)
self._logger.info(results)
self._logger.info('Found golden setting:')
self._logger.info(space_eval(self.search_space, self._best_result))
示例5: run
# 需要导入模块: from hyperopt import tpe [as 别名]
# 或者: from hyperopt.tpe import suggest [as 别名]
def run(self):
trials = Trials()
best = fmin(self._obj, self.model_param_space._build_space(),
tpe.suggest, self.max_evals, trials)
best_params = space_eval(self.model_param_space._build_space(), best)
best_params = self.model_param_space._convert_into_param(best_params)
trial_loss = np.asarray(trials.losses(), dtype=float)
best_ind = np.argmin(trial_loss)
best_ap = trial_loss[best_ind]
best_loss = trials.trial_attachments(trials.trials[best_ind])["loss"]
best_acc = trials.trial_attachments(trials.trials[best_ind])["acc"]
self.logger.info("-" * 50)
self.logger.info("Best Average Precision: %.3f" % best_ap)
self.logger.info("with Loss %.3f, Accuracy %.3f" % (best_loss, best_acc))
self.logger.info("Best Param:")
self.task._print_param_dict(best_params)
self.logger.info("-" * 50)
示例6: params_search
# 需要导入模块: from hyperopt import tpe [as 别名]
# 或者: from hyperopt.tpe import suggest [as 别名]
def params_search(self):
"""
˜ function to search params
"""
def objective(args):
logger.info(f"Params : {args}")
try:
self.params = args
self.exchange = BitMexBackTest()
self.exchange.on_update(self.bin_size, self.strategy)
profit_factor = self.exchange.win_profit/self.exchange.lose_loss
logger.info(f"Profit Factor : {profit_factor}")
ret = {
'status': STATUS_OK,
'loss': 1/profit_factor
}
except Exception as e:
ret = {
'status': STATUS_FAIL
}
return ret
trials = Trials()
best_params = fmin(objective, self.options(), algo=tpe.suggest, trials=trials, max_evals=200)
logger.info(f"Best params is {best_params}")
logger.info(f"Best profit factor is {1/trials.best_trial['result']['loss']}")
示例7: _suggest
# 需要导入模块: from hyperopt import tpe [as 别名]
# 或者: from hyperopt.tpe import suggest [as 别名]
def _suggest(self):
"""Helper function to `suggest` that does the work of calling
`hyperopt` via its dumb API.
"""
new_ids = self.trials.new_trial_ids(1)
assert len(new_ids) == 1
self.trials.refresh()
seed = random_seed(self.random)
new_trials = tpe.suggest(new_ids, self.domain, self.trials, seed)
assert len(new_trials) == 1
self.trials.insert_trial_docs(new_trials)
self.trials.refresh()
new_trial, = new_trials # extract singleton
return new_trial
示例8: test_compilefn_cross_val
# 需要导入模块: from hyperopt import tpe [as 别名]
# 或者: from hyperopt.tpe import suggest [as 别名]
def test_compilefn_cross_val(tmpdir):
db_name = "test"
exp_name = "test2"
fn = CompileFN(db_name, exp_name,
cv_n_folds=3,
stratified=False,
random_state=True,
data_fn=data.data,
model_fn=model.build_model,
optim_metric="loss",
optim_metric_mode="min",
save_dir="/tmp/")
hyper_params = {
"data": {},
"shared": {"max_features": 100, "maxlen": 20},
"model": {"filters": hp.choice("m_filters", (2, 5)),
"hidden_dims": 3,
},
"fit": {"epochs": 1}
}
fn_test(fn, hyper_params, tmp_dir=str(tmpdir))
trials = Trials()
best = fmin(fn, hyper_params, trials=trials, algo=tpe.suggest, max_evals=2)
assert isinstance(best, dict)
示例9: run
# 需要导入模块: from hyperopt import tpe [as 别名]
# 或者: from hyperopt.tpe import suggest [as 别名]
def run():
param_space = {
'w0': 1.0,
'w1': hp.quniform('w1', 0.01, 2.0, 0.01),
'max_evals': 800
}
trial_counter = 0
trials = Trials()
objective = lambda p: hyperopt_wrapper(p)
best_params = fmin(objective, param_space, algo=tpe.suggest,\
trials = trials, max_evals=param_space["max_evals"])
print 'best parameters: '
for k, v in best_params.items():
print "%s: %s" % (k ,v)
trial_loss = np.asarray(trials.losses(), dtype=float)
best_loss = min(trial_loss)
print 'best loss: ', best_loss
示例10: run_hyperopt
# 需要导入模块: from hyperopt import tpe [as 别名]
# 或者: from hyperopt.tpe import suggest [as 别名]
def run_hyperopt(self, max_eval, space):
"""
Runs the hyperopt trainer
:param max_eval: (int) max evaluations to carry out when running hyperopt
:param space: {dict} }dictionary of hyperparameter space to explore
:return: dictionary of best fit models by dna
"""
# Reset run parameters
self._max_eval = max_eval
self._results = {}
self._eval_idx = 0
# Hyperopt is picky about the function handle
def model_handle(params):
return self.model(params)
# Run the hyperparameter optimization
_ = fmin(fn=model_handle, space=space, algo=tpe.suggest, max_evals=max_eval)
return self._results
示例11: hyperopt_lightgbm_basic
# 需要导入模块: from hyperopt import tpe [as 别名]
# 或者: from hyperopt.tpe import suggest [as 别名]
def hyperopt_lightgbm_basic(X, y, params, config, max_evals=50):
X_train, X_test, y_train, y_test = data_split_by_time(X, y, test_size=0.2)
X_train, X_val, y_train, y_val = data_split_by_time(X, y, test_size=0.3)
train_data = lgb.Dataset(X_train, label=y_train)
val_data = lgb.Dataset(X_val, label=y_val)
space = {
"learning_rate": hp.loguniform("learning_rate", np.log(0.01), np.log(0.5)),
#"forgetting_factor": hp.loguniform("forgetting_factor", 0.01, 0.1)
#"max_depth": hp.choice("max_depth", [-1, 2, 3, 4, 5, 6]),
"max_depth": hp.choice("max_depth", [1, 2, 3, 4, 5, 6]),
"num_leaves": hp.choice("num_leaves", np.linspace(10, 200, 50, dtype=int)),
"feature_fraction": hp.quniform("feature_fraction", 0.5, 1.0, 0.1),
"bagging_fraction": hp.quniform("bagging_fraction", 0.5, 1.0, 0.1),
"bagging_freq": hp.choice("bagging_freq", np.linspace(0, 50, 10, dtype=int)),
"reg_alpha": hp.uniform("reg_alpha", 0, 2),
"reg_lambda": hp.uniform("reg_lambda", 0, 2),
"min_child_weight": hp.uniform('min_child_weight', 0.5, 10),
}
def objective(hyperparams):
model = lgb.train({**params, **hyperparams}, train_data, 100,
val_data, early_stopping_rounds=30, verbose_eval=0)
pred = model.predict(X_test)
score = roc_auc_score(y_test, pred)
return {'loss': -score, 'status': STATUS_OK}
trials = Trials()
best = hyperopt.fmin(fn=objective, space=space, trials=trials,
algo=tpe.suggest, max_evals=max_evals, verbose=1,
rstate=np.random.RandomState(1))
hyperparams = space_eval(space, best)
log(f"auc = {-trials.best_trial['result']['loss']:0.4f} {hyperparams}")
return hyperparams
示例12: hyperopt_lightgbm
# 需要导入模块: from hyperopt import tpe [as 别名]
# 或者: from hyperopt.tpe import suggest [as 别名]
def hyperopt_lightgbm(X_train: pd.DataFrame, y_train: pd.Series, params: Dict, config: Config, max_evals=10):
X_train, X_test, y_train, y_test = data_split_by_time(X_train, y_train, test_size=0.2)
X_train, X_val, y_train, y_val = data_split_by_time(X_train, y_train, test_size=0.3)
train_data = lgb.Dataset(X_train, label=y_train)
valid_data = lgb.Dataset(X_val, label=y_val)
space = {
"learning_rate": hp.loguniform("learning_rate", np.log(0.01), np.log(0.5)),
#"max_depth": hp.choice("max_depth", [-1, 2, 3, 4, 5, 6]),
"max_depth": hp.choice("max_depth", [1, 2, 3, 4, 5, 6]),
"num_leaves": hp.choice("num_leaves", np.linspace(10, 200, 50, dtype=int)),
"feature_fraction": hp.quniform("feature_fraction", 0.5, 1.0, 0.1),
"bagging_fraction": hp.quniform("bagging_fraction", 0.5, 1.0, 0.1),
"bagging_freq": hp.choice("bagging_freq", np.linspace(0, 50, 10, dtype=int)),
"reg_alpha": hp.uniform("reg_alpha", 0, 2),
"reg_lambda": hp.uniform("reg_lambda", 0, 2),
"min_child_weight": hp.uniform('min_child_weight', 0.5, 10),
}
def objective(hyperparams):
if config.time_left() < 50:
return {'status': STATUS_FAIL}
else:
model = lgb.train({**params, **hyperparams}, train_data, 100,
valid_data, early_stopping_rounds=10, verbose_eval=0)
pred = model.predict(X_test)
score = roc_auc_score(y_test, pred)
#score = model.best_score["valid_0"][params["metric"]]
# in classification, less is better
return {'loss': -score, 'status': STATUS_OK}
trials = Trials()
best = hyperopt.fmin(fn=objective, space=space, trials=trials,
algo=tpe.suggest, max_evals=max_evals, verbose=1,
rstate=np.random.RandomState(1))
hyperparams = space_eval(space, best)
log(f"auc = {-trials.best_trial['result']['loss']:0.4f} {hyperparams}")
return hyperparams
示例13: run
# 需要导入模块: from hyperopt import tpe [as 别名]
# 或者: from hyperopt.tpe import suggest [as 别名]
def run(self):
start = time.time()
trials = Trials()
best = fmin(self._obj, self.model_param_space._build_space(), tpe.suggest, self.max_evals, trials)
best_params = space_eval(self.model_param_space._build_space(), best)
best_params = self.model_param_space._convert_int_param(best_params)
trial_rmses = np.asarray(trials.losses(), dtype=float)
best_ind = np.argmin(trial_rmses)
best_rmse_mean = trial_rmses[best_ind]
best_rmse_std = trials.trial_attachments(trials.trials[best_ind])["std"]
self.logger.info("-"*50)
self.logger.info("Best RMSE")
self.logger.info(" Mean: %.6f"%best_rmse_mean)
self.logger.info(" std: %.6f"%best_rmse_std)
self.logger.info("Best param")
self.task._print_param_dict(best_params)
end = time.time()
_sec = end - start
_min = int(_sec/60.)
self.logger.info("Time")
if _min > 0:
self.logger.info(" %d mins"%_min)
else:
self.logger.info(" %d secs"%_sec)
self.logger.info("-"*50)
#------------------------ Main -------------------------
示例14: best_model
# 需要导入模块: from hyperopt import tpe [as 别名]
# 或者: from hyperopt.tpe import suggest [as 别名]
def best_model(self, X_train, y_train, X_test, y_test):
self.train_x = X_train
self.train_y = y_train
self.test_x = X_test
self.test_y = y_test
algo = partial(tpe.suggest, n_startup_jobs=1)
best = fmin(self.LSTM, space=self.paras.hyper_opt, algo=algo, max_evals=20)
print("best", best)
return best
示例15: best_model
# 需要导入模块: from hyperopt import tpe [as 别名]
# 或者: from hyperopt.tpe import suggest [as 别名]
def best_model(self):
algo = partial(tpe.suggest, n_startup_jobs=1)
best = fmin(self.GBM, space=self.paras.hyper_opt, algo=algo, max_evals=20)
print("best", best)
return best