本文整理汇总了Python中hyperopt.space_eval方法的典型用法代码示例。如果您正苦于以下问题:Python hyperopt.space_eval方法的具体用法?Python hyperopt.space_eval怎么用?Python hyperopt.space_eval使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类hyperopt
的用法示例。
在下文中一共展示了hyperopt.space_eval方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: optimize_hyperparam
# 需要导入模块: import hyperopt [as 别名]
# 或者: from hyperopt import space_eval [as 别名]
def optimize_hyperparam(self, X, y, test_size=.2, n_eval=100):
X_trn, X_val, y_trn, y_val = train_test_split(X, y, test_size=test_size, shuffle=self.shuffle)
def objective(hyperparams):
model = XGBModel(n_estimators=self.n_est, **self.params, **hyperparams)
model.fit(X=X_trn, y=y_trn,
eval_set=[(X_val, y_val)],
eval_metric=self.metric,
early_stopping_rounds=self.n_stop,
verbose=False)
score = model.evals_result()['validation_0'][self.metric][model.best_iteration] * self.loss_sign
return {'loss': score, 'status': STATUS_OK, 'model': model}
trials = Trials()
best = hyperopt.fmin(fn=objective, space=self.space, trials=trials,
algo=tpe.suggest, max_evals=n_eval, verbose=1,
rstate=self.random_state)
hyperparams = space_eval(self.space, best)
return hyperparams, trials
示例2: optimize
# 需要导入模块: import hyperopt [as 别名]
# 或者: from hyperopt import space_eval [as 别名]
def optimize(self):
"""Function that performs bayesian optimization"""
trials = Trials()
self._best_result = fmin(fn=self._get_loss, space=self.search_space, trials=trials,
algo=tpe.suggest, max_evals=self.max_evals)
columns = list(self.search_space.keys())
results = pd.DataFrame(columns=['iteration'] + columns + ['loss'])
for idx, trial in enumerate(trials.trials):
row = [idx]
translated_eval = space_eval(self.search_space, {k: v[0] for k, v in trial['misc']['vals'].items()})
for k in columns:
row.append(translated_eval[k])
row.append(trial['result']['loss'])
results.loc[idx] = row
path = self.config_local.path_result / self.model_name
path.mkdir(parents=True, exist_ok=True)
results.to_csv(str(path / "trials.csv"), index=False)
self._logger.info(results)
self._logger.info('Found golden setting:')
self._logger.info(space_eval(self.search_space, self._best_result))
示例3: run
# 需要导入模块: import hyperopt [as 别名]
# 或者: from hyperopt import space_eval [as 别名]
def run(self):
trials = Trials()
best = fmin(self._obj, self.model_param_space._build_space(),
tpe.suggest, self.max_evals, trials)
best_params = space_eval(self.model_param_space._build_space(), best)
best_params = self.model_param_space._convert_into_param(best_params)
trial_loss = np.asarray(trials.losses(), dtype=float)
best_ind = np.argmin(trial_loss)
best_ap = trial_loss[best_ind]
best_loss = trials.trial_attachments(trials.trials[best_ind])["loss"]
best_acc = trials.trial_attachments(trials.trials[best_ind])["acc"]
self.logger.info("-" * 50)
self.logger.info("Best Average Precision: %.3f" % best_ap)
self.logger.info("with Loss %.3f, Accuracy %.3f" % (best_loss, best_acc))
self.logger.info("Best Param:")
self.task._print_param_dict(best_params)
self.logger.info("-" * 50)
示例4: hyperopt_lightgbm_basic
# 需要导入模块: import hyperopt [as 别名]
# 或者: from hyperopt import space_eval [as 别名]
def hyperopt_lightgbm_basic(X, y, params, config, max_evals=50):
X_train, X_test, y_train, y_test = data_split_by_time(X, y, test_size=0.2)
X_train, X_val, y_train, y_val = data_split_by_time(X, y, test_size=0.3)
train_data = lgb.Dataset(X_train, label=y_train)
val_data = lgb.Dataset(X_val, label=y_val)
space = {
"learning_rate": hp.loguniform("learning_rate", np.log(0.01), np.log(0.5)),
#"forgetting_factor": hp.loguniform("forgetting_factor", 0.01, 0.1)
#"max_depth": hp.choice("max_depth", [-1, 2, 3, 4, 5, 6]),
"max_depth": hp.choice("max_depth", [1, 2, 3, 4, 5, 6]),
"num_leaves": hp.choice("num_leaves", np.linspace(10, 200, 50, dtype=int)),
"feature_fraction": hp.quniform("feature_fraction", 0.5, 1.0, 0.1),
"bagging_fraction": hp.quniform("bagging_fraction", 0.5, 1.0, 0.1),
"bagging_freq": hp.choice("bagging_freq", np.linspace(0, 50, 10, dtype=int)),
"reg_alpha": hp.uniform("reg_alpha", 0, 2),
"reg_lambda": hp.uniform("reg_lambda", 0, 2),
"min_child_weight": hp.uniform('min_child_weight', 0.5, 10),
}
def objective(hyperparams):
model = lgb.train({**params, **hyperparams}, train_data, 100,
val_data, early_stopping_rounds=30, verbose_eval=0)
pred = model.predict(X_test)
score = roc_auc_score(y_test, pred)
return {'loss': -score, 'status': STATUS_OK}
trials = Trials()
best = hyperopt.fmin(fn=objective, space=space, trials=trials,
algo=tpe.suggest, max_evals=max_evals, verbose=1,
rstate=np.random.RandomState(1))
hyperparams = space_eval(space, best)
log(f"auc = {-trials.best_trial['result']['loss']:0.4f} {hyperparams}")
return hyperparams
示例5: hyperopt_lightgbm
# 需要导入模块: import hyperopt [as 别名]
# 或者: from hyperopt import space_eval [as 别名]
def hyperopt_lightgbm(X_train: pd.DataFrame, y_train: pd.Series, params: Dict, config: Config, max_evals=10):
X_train, X_test, y_train, y_test = data_split_by_time(X_train, y_train, test_size=0.2)
X_train, X_val, y_train, y_val = data_split_by_time(X_train, y_train, test_size=0.3)
train_data = lgb.Dataset(X_train, label=y_train)
valid_data = lgb.Dataset(X_val, label=y_val)
space = {
"learning_rate": hp.loguniform("learning_rate", np.log(0.01), np.log(0.5)),
#"max_depth": hp.choice("max_depth", [-1, 2, 3, 4, 5, 6]),
"max_depth": hp.choice("max_depth", [1, 2, 3, 4, 5, 6]),
"num_leaves": hp.choice("num_leaves", np.linspace(10, 200, 50, dtype=int)),
"feature_fraction": hp.quniform("feature_fraction", 0.5, 1.0, 0.1),
"bagging_fraction": hp.quniform("bagging_fraction", 0.5, 1.0, 0.1),
"bagging_freq": hp.choice("bagging_freq", np.linspace(0, 50, 10, dtype=int)),
"reg_alpha": hp.uniform("reg_alpha", 0, 2),
"reg_lambda": hp.uniform("reg_lambda", 0, 2),
"min_child_weight": hp.uniform('min_child_weight', 0.5, 10),
}
def objective(hyperparams):
if config.time_left() < 50:
return {'status': STATUS_FAIL}
else:
model = lgb.train({**params, **hyperparams}, train_data, 100,
valid_data, early_stopping_rounds=10, verbose_eval=0)
pred = model.predict(X_test)
score = roc_auc_score(y_test, pred)
#score = model.best_score["valid_0"][params["metric"]]
# in classification, less is better
return {'loss': -score, 'status': STATUS_OK}
trials = Trials()
best = hyperopt.fmin(fn=objective, space=space, trials=trials,
algo=tpe.suggest, max_evals=max_evals, verbose=1,
rstate=np.random.RandomState(1))
hyperparams = space_eval(space, best)
log(f"auc = {-trials.best_trial['result']['loss']:0.4f} {hyperparams}")
return hyperparams
示例6: return_best
# 需要导入模块: import hyperopt [as 别名]
# 或者: from hyperopt import space_eval [as 别名]
def return_best(self):
"""Function to return the best hyper-parameters"""
assert hasattr(self, '_best_result') is True, 'Cannot find golden setting. Has optimize() been called?'
return space_eval(self.search_space, self._best_result)
示例7: run
# 需要导入模块: import hyperopt [as 别名]
# 或者: from hyperopt import space_eval [as 别名]
def run(self):
start = time.time()
trials = Trials()
best = fmin(self._obj, self.model_param_space._build_space(), tpe.suggest, self.max_evals, trials)
best_params = space_eval(self.model_param_space._build_space(), best)
best_params = self.model_param_space._convert_int_param(best_params)
trial_rmses = np.asarray(trials.losses(), dtype=float)
best_ind = np.argmin(trial_rmses)
best_rmse_mean = trial_rmses[best_ind]
best_rmse_std = trials.trial_attachments(trials.trials[best_ind])["std"]
self.logger.info("-"*50)
self.logger.info("Best RMSE")
self.logger.info(" Mean: %.6f"%best_rmse_mean)
self.logger.info(" std: %.6f"%best_rmse_std)
self.logger.info("Best param")
self.task._print_param_dict(best_params)
end = time.time()
_sec = end - start
_min = int(_sec/60.)
self.logger.info("Time")
if _min > 0:
self.logger.info(" %d mins"%_min)
else:
self.logger.info(" %d secs"%_sec)
self.logger.info("-"*50)
#------------------------ Main -------------------------
示例8: hyperopt_lightgbm
# 需要导入模块: import hyperopt [as 别名]
# 或者: from hyperopt import space_eval [as 别名]
def hyperopt_lightgbm(X: pd.DataFrame, y: pd.Series, params: Dict, config: Config):
X_train, X_val, y_train, y_val = data_split(X, y, test_size=0.5)
train_data = lgb.Dataset(X_train, label=y_train)
valid_data = lgb.Dataset(X_val, label=y_val)
space = {
"max_depth": hp.choice("max_depth", np.arange(2, 10, 1, dtype=int)),
# smaller than 2^(max_depth)
"num_leaves": hp.choice("num_leaves", np.arange(4, 200, 4, dtype=int)),
"feature_fraction": hp.quniform("feature_fraction", 0.2, 0.8, 0.1),
# "bagging_fraction": hp.quniform("bagging_fraction", 0.2, 0.8, 0.1),
# "bagging_freq": hp.choice("bagging_freq", np.linspace(0, 10, 2, dtype=int)),
# "scale_pos_weight":hp.uniform('scale_pos_weight',1.0, 10.0),
# "colsample_by_tree":hp.uniform("colsample_bytree",0.5,1.0),
"min_child_weight": hp.quniform('min_child_weight', 2, 50, 2),
"reg_alpha": hp.uniform("reg_alpha", 2.0, 8.0),
"reg_lambda": hp.uniform("reg_lambda", 2.0, 8.0),
"learning_rate": hp.quniform("learning_rate", 0.05, 0.4, 0.01),
# "learning_rate": hp.loguniform("learning_rate", np.log(0.04), np.log(0.5)),
#
"min_data_in_leaf": hp.choice('min_data_in_leaf', np.arange(200, 2000, 100, dtype=int)),
#"is_unbalance": hp.choice("is_unbalance", [True])
}
def objective(hyperparams):
model = lgb.train({**params, **hyperparams}, train_data, 300,
valid_data, early_stopping_rounds=45, verbose_eval=0)
score = model.best_score["valid_0"][params["metric"]]
# in classification, less is better
return {'loss': -score, 'status': STATUS_OK}
trials = Trials()
best = hyperopt.fmin(fn=objective, space=space, trials=trials,
algo=tpe.suggest, max_evals=150, verbose=1,
rstate=np.random.RandomState(1))
hyperparams = space_eval(space, best)
log(f"auc = {-trials.best_trial['result']['loss']:0.4f} {hyperparams}")
return hyperparams
示例9: optimize_model
# 需要导入模块: import hyperopt [as 别名]
# 或者: from hyperopt import space_eval [as 别名]
def optimize_model(self):
print("Beginning hyperparameter optimization...")
print("Trying {} combinations of hyperparameters".format(self.hp_maxit))
print("Training with {} points (Full dataset contains {} points).".format(self.ntrain, self.n_datapoints))
print("Using {} training set point sampling.".format(self.sampler))
print("Errors are root-mean-square error in wavenumbers (cm-1)")
self.hyperopt_trials = Trials()
self.itercount = 1 # keep track of hyperopt iterations
if self.input_obj.keywords['rseed']:
rstate = np.random.RandomState(self.input_obj.keywords['rseed'])
else:
rstate = None
best = fmin(self.hyperopt_model,
space=self.hyperparameter_space,
algo=tpe.suggest,
max_evals=self.hp_maxit*2,
rstate=rstate,
show_progressbar=False,
trials=self.hyperopt_trials)
hyperopt_complete()
print("Best performing hyperparameters are:")
final = space_eval(self.hyperparameter_space, best)
print(str(sorted(final.items())))
self.optimal_hyperparameters = dict(final)
# obtain final model from best hyperparameters
print("Fine-tuning final model architecture...")
self.build_model(self.optimal_hyperparameters, nrestarts=10, maxit=1000)
print("Final model performance (cm-1):")
self.test_error = self.vet_model(self.model)
self.save_model(self.optimal_hyperparameters)
示例10: run
# 需要导入模块: import hyperopt [as 别名]
# 或者: from hyperopt import space_eval [as 别名]
def run(self):
trials = Trials()
best = fmin(self._obj, self.model_param_space._build_space(), tpe.suggest, self.max_evals, trials)
best_params = space_eval(self.model_param_space._build_space(), best)
best_params = self.model_param_space._convert_into_param(best_params)
trial_loss = np.asarray(trials.losses(), dtype=float)
best_ind = np.argmin(trial_loss)
best_loss = -trial_loss[best_ind]
best_pacc = trials.trial_attachments(trials.trials[best_ind])["pacc"]
# best_eacc = trials.trial_attachments(trials.trials[best_ind])["eacc"]
self.logger.info("-" * 50)
self.logger.info("Best Exact Accuracy %.3f with Parital Accuracy %.3f" % (best_loss, best_pacc))
self.logger.info("Best Param:")
self.task._print_param_dict(best_params)
self.logger.info("-" * 50)
示例11: eval_hyperopt_space
# 需要导入模块: import hyperopt [as 别名]
# 或者: from hyperopt import space_eval [as 别名]
def eval_hyperopt_space(space, vals):
"""
Evaluate a set of parameter values within the hyperopt space.
Optionally unpacks the values, if they are wrapped in lists.
:param space: dict
the hyperopt space dictionary
:param vals: dict
the values from a hyperopt trial
:return: evaluated space
"""
unpacked_vals = unpack_hyperopt_vals(vals)
return space_eval(space, unpacked_vals)
示例12: model_selector
# 需要导入模块: import hyperopt [as 别名]
# 或者: from hyperopt import space_eval [as 别名]
def model_selector(self, max_evals=50):
trials = Trials()
best_clf = fmin(self.f, CUMULATIVE_SEARCH_SPACE, algo=tpe.suggest,
max_evals=max_evals, trials=trials)
config = space_eval(CUMULATIVE_SEARCH_SPACE, best_clf)
print(config)
return construct_classifier(config)
示例13: optimize_model
# 需要导入模块: import hyperopt [as 别名]
# 或者: from hyperopt import space_eval [as 别名]
def optimize_model(self):
if not self.input_obj.keywords['validation_points']:
print("Number of validation points not specified. Splitting test set in half --> 50% test, 50% validation")
print("Training with {} points. Validating with {} points. Full dataset contains {} points.".format(self.ntrain, self.nvalid, self.n_datapoints))
print("Using {} training set point sampling.".format(self.sampler))
print("Errors are root-mean-square error in wavenumbers (cm-1)")
print("\nPerforming neural architecture search...\n")
best_hlayers = self.neural_architecture_search(trial_layers = self.trial_layers)
print("\nNeural architecture search complete. Best hidden layer structures: {}\n".format(best_hlayers))
print("Beginning hyperparameter optimization...")
print("Trying {} combinations of hyperparameters".format(self.hp_maxit))
self.set_hyperparameter('layers', hp.choice('layers', best_hlayers))
self.hyperopt_trials = Trials()
self.itercount = 1
if self.input_obj.keywords['rseed']:
rstate = np.random.RandomState(self.input_obj.keywords['rseed'])
else:
rstate = None
best = fmin(self.hyperopt_model,
space=self.hyperparameter_space,
algo=tpe.suggest,
max_evals=self.hp_maxit*2,
rstate=rstate,
show_progressbar=False,
trials=self.hyperopt_trials)
hyperopt_complete()
print("Best performing hyperparameters are:")
final = space_eval(self.hyperparameter_space, best)
print(str(sorted(final.items())))
self.optimal_hyperparameters = dict(final)
print("Optimizing learning rate...")
if self.input_obj.keywords['nn_precision'] == 64:
precision = 64
elif self.input_obj.keywords['nn_precision'] == 32:
precision = 32
else:
precision = 32
learning_rates = [1.0, 0.8, 0.6, 0.5, 0.4, 0.2]
val_errors = []
for i in learning_rates:
self.optimal_hyperparameters['lr'] = i
test_error, val_error = self.build_model(self.optimal_hyperparameters, maxit=5000, val_freq=10, es_patience=5, opt='lbfgs', tol=0.5, decay=False, verbose=False, precision=precision)
val_errors.append(val_error)
best_lr = learning_rates[np.argsort(val_errors)[0]]
self.optimal_hyperparameters['lr'] = best_lr
print("Fine-tuning final model...")
model, test_error, val_error, full_error = self.build_model(self.optimal_hyperparameters, maxit=5000, val_freq=1, es_patience=100, opt='lbfgs', tol=0.1, decay=True, verbose=True,precision=precision,return_model=True)
performance = [test_error, val_error, full_error]
print("Model optimization complete. Saving final model...")
self.save_model(self.optimal_hyperparameters, model, performance)