当前位置: 首页>>代码示例>>Python>>正文


Python hp.choice方法代码示例

本文整理汇总了Python中hyperopt.hp.choice方法的典型用法代码示例。如果您正苦于以下问题:Python hp.choice方法的具体用法?Python hp.choice怎么用?Python hp.choice使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在hyperopt.hp的用法示例。


在下文中一共展示了hp.choice方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_compilefn_train_test_split

# 需要导入模块: from hyperopt import hp [as 别名]
# 或者: from hyperopt.hp import choice [as 别名]
def test_compilefn_train_test_split(tmpdir):
    db_name = "test"
    exp_name = "test2"
    fn = CompileFN(db_name, exp_name,
                   data_fn=data.data,
                   model_fn=model.build_model,
                   optim_metric="acc",
                   optim_metric_mode="max",
                   # eval
                   valid_split=.5,
                   stratified=False,
                   random_state=True,
                   save_dir="/tmp/")
    hyper_params = {
        "data": {},
        "shared": {"max_features": 100, "maxlen": 20},
        "model": {"filters": hp.choice("m_filters", (2, 5)),
                  "hidden_dims": 3,
                  },
        "fit": {"epochs": 1}
    }
    fn_test(fn, hyper_params, tmp_dir=str(tmpdir))
    trials = Trials()
    best = fmin(fn, hyper_params, trials=trials, algo=tpe.suggest, max_evals=2)
    assert isinstance(best, dict) 
开发者ID:Avsecz,项目名称:kopt,代码行数:27,代码来源:test_hyopt.py

示例2: __init__

# 需要导入模块: from hyperopt import hp [as 别名]
# 或者: from hyperopt.hp import choice [as 别名]
def __init__(self, estimator=None, max_evals=50, cv=5, handle_cv_failure=False, 
                scoring='accuracy', best_score=0.0, max_opt_time=None, max_eval_time=None, 
                pgo:Optional[PGO]=None, show_progressbar=True, args_to_scorer=None,
                verbose=False):
        self.max_evals = max_evals
        if estimator is None:
            self.estimator = LogisticRegression()
        else:
            self.estimator = estimator
        self.search_space = hp.choice('meta_model', [hyperopt_search_space(self.estimator, pgo=pgo)])
        self.scoring = scoring
        self.best_score = best_score
        self.handle_cv_failure = handle_cv_failure
        self.cv = cv
        self._trials = Trials()
        self.max_opt_time = max_opt_time
        self.max_eval_time = max_eval_time
        self.show_progressbar = show_progressbar
        if args_to_scorer is not None:
            self.args_to_scorer = args_to_scorer
        else:
            self.args_to_scorer = {}
        self.verbose = verbose 
开发者ID:IBM,项目名称:lale,代码行数:25,代码来源:hyperopt.py

示例3: test_convert_conditional_space

# 需要导入模块: from hyperopt import hp [as 别名]
# 或者: from hyperopt.hp import choice [as 别名]
def test_convert_conditional_space(self):
        a_or_b = configuration_space.CategoricalHyperparameter("a_or_b", ["a", "b"])
        cond_a = configuration_space.UniformFloatHyperparameter(
            'cond_a', 0, 1, conditions=[['a_or_b == a']])
        cond_b = configuration_space.UniformFloatHyperparameter(
            'cond_b', 0, 3, q=0.1, conditions=[['a_or_b == b']])
        conditional_space = {"a_or_b": a_or_b, "cond_a": cond_a, "cond_b": cond_b}
        cs = self.pyll_writer.write(conditional_space)
        expected = StringIO.StringIO()
        expected.write('from hyperopt import hp\nimport hyperopt.pyll as pyll')
        expected.write('\n\n')
        expected.write('param_0 = hp.uniform("cond_a", 0.0, 1.0)\n')
        expected.write('param_1 = hp.quniform("cond_b", -0.0499, 3.05, 0.1)\n')
        expected.write('param_2 = hp.choice("a_or_b", [\n')
        expected.write('    {"a_or_b": "a", "cond_a": param_0, },\n')
        expected.write('    {"a_or_b": "b", "cond_b": param_1, },\n')
        expected.write('    ])\n\n')
        expected.write('space = {"a_or_b": param_2}\n')
        self.assertEqual(expected.getvalue(), cs) 
开发者ID:automl,项目名称:HPOlib,代码行数:21,代码来源:test_pyll_util.py

示例4: test_operator_in

# 需要导入模块: from hyperopt import hp [as 别名]
# 或者: from hyperopt.hp import choice [as 别名]
def test_operator_in(self):
        a_or_b = configuration_space.CategoricalHyperparameter("a_or_b", ["a", "b"])
        cond_a = configuration_space.UniformFloatHyperparameter(
            'cond_a', 0, 1, conditions=[['a_or_b == a']])
        cond_b = configuration_space.UniformFloatHyperparameter(
            'cond_b', 0, 3, q=0.1, conditions=[['a_or_b == b']])
        e = configuration_space.UniformFloatHyperparameter("e", 0, 5,
                                     conditions=[['a_or_b in {a,b}']])
        conditional_space_operator_in = {"a_or_b": a_or_b, "cond_a": cond_a,
                                 "cond_b": cond_b, "e": e}
        cs = self.pyll_writer.write(conditional_space_operator_in)
        expected = StringIO.StringIO()
        expected.write('from hyperopt import hp\nimport hyperopt.pyll as pyll')
        expected.write('\n\n')
        expected.write('param_0 = hp.uniform("cond_a", 0.0, 1.0)\n')
        expected.write('param_1 = hp.quniform("cond_b", -0.0499, 3.05, 0.1)\n')
        expected.write('param_2 = hp.uniform("e", 0.0, 5.0)\n')
        expected.write('param_3 = hp.choice("a_or_b", [\n')
        expected.write('    {"a_or_b": "a", "cond_a": param_0, "e": param_2, '
                       '},\n')
        expected.write('    {"a_or_b": "b", "cond_b": param_1, "e": param_2, '
                       '},\n')
        expected.write('    ])\n\n')
        expected.write('space = {"a_or_b": param_3}\n')
        self.assertEqual(expected.getvalue(), cs) 
开发者ID:automl,项目名称:HPOlib,代码行数:27,代码来源:test_pyll_util.py

示例5: set_default_hyperparameters

# 需要导入模块: from hyperopt import hp [as 别名]
# 或者: from hyperopt.hp import choice [as 别名]
def set_default_hyperparameters(self):
        """
        Set default hyperparameter space. If none is provided, default is used.
        """
        self.hyperparameter_space = {
                                    'scale_X': hp.choice('scale_X', ['std', 'mm01', 'mm11', None]),
                                    'scale_y': hp.choice('scale_y', ['std', 'mm01', 'mm11', None]),
                                    }

        if self.input_obj.keywords['pes_format'] == 'interatomics':
            self.set_hyperparameter('morse_transform', hp.choice('morse_transform',[{'morse': True,'morse_alpha': hp.quniform('morse_alpha', 1, 2, 0.1)},{'morse': False}]))
        else:
            self.set_hyperparameter('morse_transform', hp.choice('morse_transform',[{'morse': False}]))
        if self.pip:
            val =  hp.choice('pip',[{'pip': True,'degree_reduction': hp.choice('degree_reduction', [True,False])}])
            self.set_hyperparameter('pip', val)
        else:
            self.set_hyperparameter('pip', hp.choice('pip', [{'pip': False}]))

        if self.input_obj.keywords['gp_ard'] == 'opt': # auto relevancy determination (independant length scales for each feature)
            self.set_hyperparameter('ARD', hp.choice('ARD', [True,False]))
         #TODO add optional space inclusions, something like: if option: self.hyperparameter_space['newoption'] = hp.choice(..) 
开发者ID:CCQC,项目名称:PES-Learn,代码行数:24,代码来源:gaussian_process.py

示例6: test_compilefn_cross_val

# 需要导入模块: from hyperopt import hp [as 别名]
# 或者: from hyperopt.hp import choice [as 别名]
def test_compilefn_cross_val(tmpdir):
    db_name = "test"
    exp_name = "test2"
    fn = CompileFN(db_name, exp_name,
                   cv_n_folds=3,
                   stratified=False,
                   random_state=True,
                   data_fn=data.data,
                   model_fn=model.build_model,
                   optim_metric="loss",
                   optim_metric_mode="min",
                   save_dir="/tmp/")
    hyper_params = {
        "data": {},
        "shared": {"max_features": 100, "maxlen": 20},
        "model": {"filters": hp.choice("m_filters", (2, 5)),
                  "hidden_dims": 3,
                  },
        "fit": {"epochs": 1}
    }
    fn_test(fn, hyper_params, tmp_dir=str(tmpdir))
    trials = Trials()
    best = fmin(fn, hyper_params, trials=trials, algo=tpe.suggest, max_evals=2)
    assert isinstance(best, dict) 
开发者ID:Avsecz,项目名称:kopt,代码行数:26,代码来源:test_hyopt.py

示例7: train_and_predict_with_time_control_basic

# 需要导入模块: from hyperopt import hp [as 别名]
# 或者: from hyperopt.hp import choice [as 别名]
def train_and_predict_with_time_control_basic(X_train: pd.DataFrame, X_test:pd.DataFrame, y:pd.Series, config:Config, random_state, test=False):
    if test:
        X_train, X_test, y, y_test = data_split_by_time(X_train, y, test_size=0.2)

    params = {
        "objective": "binary",
        "metric": "auc",
        "verbosity": -1,
        "seed": 1,
        "num_threads": 4
    }
    result = None

    ##-------------Generate random index--------------
    #index = random_state.choice(X_train.shape[0], 30000, replace=False)
    #index.sort()
    ### If assign the n_p_ratio, the HPO process will become very slow, which
    ### indicates low convergence speed.
    #index = sample(X_train, y, sample_size=30000, n_p_ratio=20, is_sort=True)
    index = sample(X_train, y, sample_size=30000, is_sort=True, random_state=random_state, same_ratio=False)
    X_sample = X_train.iloc[index]
    y_sample = y.iloc[index]

    hyperparams = hyperopt_lightgbm_basic(X_sample, y_sample, params, config)

    X_train, X_val, y, y_val = data_split_by_time(X_train, y, test_size=0.1)
    train_data = lgb.Dataset(X_train, y)
    val_data = lgb.Dataset(X_val, y_val)

    model = lgb.train({**params, **hyperparams}, train_data, 10000,
                          val_data, early_stopping_rounds=30, verbose_eval=100)


    result = model.predict(X_test)

    return result 
开发者ID:DominickZhang,项目名称:KDDCup2019_admin,代码行数:38,代码来源:automl.py

示例8: hyperopt_lightgbm_basic

# 需要导入模块: from hyperopt import hp [as 别名]
# 或者: from hyperopt.hp import choice [as 别名]
def hyperopt_lightgbm_basic(X, y, params, config, max_evals=50):
    X_train, X_test, y_train, y_test = data_split_by_time(X, y, test_size=0.2)
    X_train, X_val, y_train, y_val = data_split_by_time(X, y, test_size=0.3)
    train_data = lgb.Dataset(X_train, label=y_train)
    val_data = lgb.Dataset(X_val, label=y_val)

    space = {
        "learning_rate": hp.loguniform("learning_rate", np.log(0.01), np.log(0.5)),
        #"forgetting_factor": hp.loguniform("forgetting_factor", 0.01, 0.1)
        #"max_depth": hp.choice("max_depth", [-1, 2, 3, 4, 5, 6]),
        "max_depth": hp.choice("max_depth", [1, 2, 3, 4, 5, 6]),
        "num_leaves": hp.choice("num_leaves", np.linspace(10, 200, 50, dtype=int)),
        "feature_fraction": hp.quniform("feature_fraction", 0.5, 1.0, 0.1),
        "bagging_fraction": hp.quniform("bagging_fraction", 0.5, 1.0, 0.1),
        "bagging_freq": hp.choice("bagging_freq", np.linspace(0, 50, 10, dtype=int)),
        "reg_alpha": hp.uniform("reg_alpha", 0, 2),
        "reg_lambda": hp.uniform("reg_lambda", 0, 2),
        "min_child_weight": hp.uniform('min_child_weight', 0.5, 10),
    }

    def objective(hyperparams):
        model = lgb.train({**params, **hyperparams}, train_data, 100,
                        val_data, early_stopping_rounds=30, verbose_eval=0)
        pred = model.predict(X_test)
        score = roc_auc_score(y_test, pred)
        return {'loss': -score, 'status': STATUS_OK}

    trials = Trials()
    best = hyperopt.fmin(fn=objective, space=space, trials=trials,
                         algo=tpe.suggest, max_evals=max_evals, verbose=1,
                         rstate=np.random.RandomState(1))

    hyperparams = space_eval(space, best)
    log(f"auc = {-trials.best_trial['result']['loss']:0.4f} {hyperparams}")
    return hyperparams 
开发者ID:DominickZhang,项目名称:KDDCup2019_admin,代码行数:37,代码来源:automl.py

示例9: hyperopt_lightgbm

# 需要导入模块: from hyperopt import hp [as 别名]
# 或者: from hyperopt.hp import choice [as 别名]
def hyperopt_lightgbm(X_train: pd.DataFrame, y_train: pd.Series, params: Dict, config: Config, max_evals=10):
    X_train, X_test, y_train, y_test = data_split_by_time(X_train, y_train, test_size=0.2)
    X_train, X_val, y_train, y_val = data_split_by_time(X_train, y_train, test_size=0.3)
    train_data = lgb.Dataset(X_train, label=y_train)
    valid_data = lgb.Dataset(X_val, label=y_val)

    space = {
        "learning_rate": hp.loguniform("learning_rate", np.log(0.01), np.log(0.5)),
        #"max_depth": hp.choice("max_depth", [-1, 2, 3, 4, 5, 6]),
        "max_depth": hp.choice("max_depth", [1, 2, 3, 4, 5, 6]),
        "num_leaves": hp.choice("num_leaves", np.linspace(10, 200, 50, dtype=int)),
        "feature_fraction": hp.quniform("feature_fraction", 0.5, 1.0, 0.1),
        "bagging_fraction": hp.quniform("bagging_fraction", 0.5, 1.0, 0.1),
        "bagging_freq": hp.choice("bagging_freq", np.linspace(0, 50, 10, dtype=int)),
        "reg_alpha": hp.uniform("reg_alpha", 0, 2),
        "reg_lambda": hp.uniform("reg_lambda", 0, 2),
        "min_child_weight": hp.uniform('min_child_weight', 0.5, 10),
    }

    def objective(hyperparams):
        if config.time_left() < 50:
            return {'status': STATUS_FAIL}
        else:
            model = lgb.train({**params, **hyperparams}, train_data, 100,
                          valid_data, early_stopping_rounds=10, verbose_eval=0)
            pred = model.predict(X_test)
            score = roc_auc_score(y_test, pred)

            #score = model.best_score["valid_0"][params["metric"]]

            # in classification, less is better
            return {'loss': -score, 'status': STATUS_OK}

    trials = Trials()
    best = hyperopt.fmin(fn=objective, space=space, trials=trials,
                         algo=tpe.suggest, max_evals=max_evals, verbose=1,
                         rstate=np.random.RandomState(1))

    hyperparams = space_eval(space, best)
    log(f"auc = {-trials.best_trial['result']['loss']:0.4f} {hyperparams}")
    return hyperparams 
开发者ID:DominickZhang,项目名称:KDDCup2019_admin,代码行数:43,代码来源:automl.py

示例10: __init__

# 需要导入模块: from hyperopt import hp [as 别名]
# 或者: from hyperopt.hp import choice [as 别名]
def __init__(self):
        self.search_space = {
          'learning_rate': hp.loguniform('learning_rate', np.log(0.00001), np.log(0.1)),
          'L1_flag': hp.choice('L1_flag', [True, False]),
          'hidden_size': scope.int(hp.qloguniform('hidden_size', np.log(8), np.log(256),1)),
          'batch_size': scope.int(hp.qloguniform('batch_size', np.log(8), np.log(4096),1)),
          'margin': hp.uniform('margin', 0.0, 10.0),
          'optimizer': hp.choice('optimizer', ["adam", "sgd", 'rms']),
          'epochs': hp.choice('epochs', [500]) # always choose 10 training epochs.
        } 
开发者ID:Sujit-O,项目名称:pykg2vec,代码行数:12,代码来源:hyperparams.py

示例11: hyperopt_lightgbm

# 需要导入模块: from hyperopt import hp [as 别名]
# 或者: from hyperopt.hp import choice [as 别名]
def hyperopt_lightgbm(X: pd.DataFrame, y: pd.Series, params: Dict, config: Config):
    X_train, X_val, y_train, y_val = data_split(X, y, test_size=0.5)
    train_data = lgb.Dataset(X_train, label=y_train)
    valid_data = lgb.Dataset(X_val, label=y_val)

    space = {
        "max_depth": hp.choice("max_depth", np.arange(2, 10, 1, dtype=int)),
        # smaller than 2^(max_depth)
        "num_leaves": hp.choice("num_leaves", np.arange(4, 200, 4, dtype=int)),
        "feature_fraction": hp.quniform("feature_fraction", 0.2, 0.8, 0.1),
        # "bagging_fraction": hp.quniform("bagging_fraction", 0.2, 0.8, 0.1),
        # "bagging_freq": hp.choice("bagging_freq", np.linspace(0, 10, 2, dtype=int)),
        # "scale_pos_weight":hp.uniform('scale_pos_weight',1.0, 10.0),
        # "colsample_by_tree":hp.uniform("colsample_bytree",0.5,1.0),
        "min_child_weight": hp.quniform('min_child_weight', 2, 50, 2),
        "reg_alpha": hp.uniform("reg_alpha", 2.0, 8.0),
        "reg_lambda": hp.uniform("reg_lambda", 2.0, 8.0),
        "learning_rate": hp.quniform("learning_rate", 0.05, 0.4, 0.01),
        # "learning_rate": hp.loguniform("learning_rate", np.log(0.04), np.log(0.5)),
        #
        "min_data_in_leaf": hp.choice('min_data_in_leaf', np.arange(200, 2000, 100, dtype=int)),
        #"is_unbalance": hp.choice("is_unbalance", [True])
    }

    def objective(hyperparams):
        model = lgb.train({**params, **hyperparams}, train_data, 300,
                          valid_data, early_stopping_rounds=45, verbose_eval=0)

        score = model.best_score["valid_0"][params["metric"]]

        # in classification, less is better
        return {'loss': -score, 'status': STATUS_OK}

    trials = Trials()
    best = hyperopt.fmin(fn=objective, space=space, trials=trials,
                         algo=tpe.suggest, max_evals=150, verbose=1,
                         rstate=np.random.RandomState(1))

    hyperparams = space_eval(space, best)
    log(f"auc = {-trials.best_trial['result']['loss']:0.4f} {hyperparams}")
    return hyperparams 
开发者ID:shuyao95,项目名称:kddcup2019-automl,代码行数:43,代码来源:automl.py

示例12: predict

# 需要导入模块: from hyperopt import hp [as 别名]
# 或者: from hyperopt.hp import choice [as 别名]
def predict(self, x):
        data = xgb.DMatrix(x)
        pred = self.model.predict(data)
        return pred


# -----------------------------------
# 探索するパラメータの空間の指定
# -----------------------------------
# hp.choiceでは、複数の選択肢から選ぶ
# hp.uniformでは、下限・上限を指定した一様分布から抽出する。引数は下限・上限
# hp.quniformでは、下限・上限を指定した一様分布のうち一定の間隔ごとの点から抽出する。引数は下限・上限・間隔
# hp.loguniformでは、下限・上限を指定した対数が一様分布に従う分布から抽出する。引数は下限・上限の対数をとった値 
开发者ID:ghmagazine,项目名称:kagglebook,代码行数:15,代码来源:ch06-01-hopt.py

示例13: test_read_switch

# 需要导入模块: from hyperopt import hp [as 别名]
# 或者: from hyperopt.hp import choice [as 别名]
def test_read_switch(self):
        # 0 switch
        # 1   hyperopt_param
        # 2     Literal{dist1}
        # 3     randint
        # 4       Literal{2}
        # 5   Literal{uniform}
        # 6   Literal{normal}
        dist = hp.choice('dist1', ['uniform', 'normal'])
        ret = self.pyll_reader.read_switch(dist)
        expected = configuration_space.CategoricalHyperparameter(
            'dist1', ['uniform', 'normal'])
        self.assertEqual(expected, ret)

        bigger_choice = hp.choice('choice', [
            {'choice': "zero", 'a': 0, 'b': hp.uniform('b', 0, 10)},
            {'choice': "other", 'a': 1, 'b': hp.uniform('b', 0, 10)}])
        ret = self.pyll_reader.read_switch(bigger_choice)
        expected = configuration_space.CategoricalHyperparameter(
            'choice', ['zero', 'other'])
        self.assertEqual(expected, ret)
        self.assertEqual(2, len(self.pyll_reader.constants))
        # Only the hyperparameter b is put into pyll_reader.hyperparameters
        self.assertEqual(1, len(self.pyll_reader.hyperparameters))

    # TODO: duplicate these tests for Integer/care about integers + test if
    # the warning of non-uniform parameters is actually printed 
开发者ID:automl,项目名称:HPOlib,代码行数:29,代码来源:test_pyll_util.py

示例14: test_convert_complex_space

# 需要导入模块: from hyperopt import hp [as 别名]
# 或者: from hyperopt.hp import choice [as 别名]
def test_convert_complex_space(self):
        cs = self.pyll_writer.write(config_space)
        expected = StringIO.StringIO()
        expected.write('from hyperopt import hp\nimport hyperopt.pyll as pyll')
        expected.write('\n\n')
        expected.write('param_0 = hp.uniform("LOG2_C", -5.0, 15.0)\n')
        expected.write('param_1 = hp.uniform("LOG2_gamma", -14.9999800563, '
                       '3.0)\n')
        expected.write('param_2 = hp.choice("kernel", [\n')
        expected.write('    {"kernel": "linear", },\n')
        expected.write('    {"kernel": "rbf", "LOG2_gamma": param_1, },\n')
        expected.write('    ])\n')
        expected.write('param_3 = hp.uniform("lr", 0.0001, 1.0)\n')
        expected.write('param_4 = pyll.scope.int(hp.quniform('
                       '"neurons", 15.50001, 1024.5, 16.0))\n')
        expected.write('param_5 = hp.choice("classifier", [\n')
        expected.write('    {"classifier": "nn", "lr": param_3, "neurons": '
                       'param_4, },\n')
        expected.write('    {"classifier": "svm", "LOG2_C": param_0, '
                       '"kernel": param_2, },\n')
        expected.write('    ])\n')
        expected.write('param_6 = hp.choice("preprocessing", [\n')
        expected.write('    {"preprocessing": "None", },\n')
        expected.write('    {"preprocessing": "pca", },\n')
        expected.write('    ])\n\n')
        expected.write('space = {"classifier": param_5, '
                       '"preprocessing": param_6}\n')
        self.assertEqual(expected.getvalue(), cs)

        self.pyll_writer.reset_hyperparameter_countr()
        expected.seek(0)
        cs = self.pyll_writer.write(config_space_2)
        self.assertEqual(expected.getvalue().replace("gamma", "gamma_2"), cs) 
开发者ID:automl,项目名称:HPOlib,代码行数:35,代码来源:test_pyll_util.py

示例15: set_default_hyperparameters

# 需要导入模块: from hyperopt import hp [as 别名]
# 或者: from hyperopt.hp import choice [as 别名]
def set_default_hyperparameters(self, nn_search_space=1):
        """
        Set default hyperparameter space. If none is provided, default is used.

        Parameters
        ----------
        nn_search_space : int
            Which tier of default hyperparameter search spaces to use. Neural networks have too many hyperparameter configurations to search across, 
            so this option reduces the number of variable hyperparameters to search over. Generally, larger integer => more hyperparameters, and more iterations of hp_maxit are recommended.
        """
        if nn_search_space == 1:
            self.hyperparameter_space = {
            'scale_X': hp.choice('scale_X',
                     [
                     {'scale_X': 'mm11',
                          'activation': hp.choice('activ2', ['tanh'])},
                     {'scale_X': 'std',
                          'activation': hp.choice('activ3', ['tanh'])},
                     ]),
            'scale_y': hp.choice('scale_y', ['std', 'mm01', 'mm11']),}
        # TODO make more expansive search spaces, benchmark them, expose them as input options
        #elif nn_search_space == 2:
        #elif nn_search_space == 3:
        else:
            raise Exception("Invalid search space specification")

        # Standard geometry transformations, always use these.
        if self.input_obj.keywords['pes_format'] == 'interatomics':
            self.set_hyperparameter('morse_transform', hp.choice('morse_transform',[{'morse': True,'morse_alpha': hp.quniform('morse_alpha', 1, 2, 0.1)},{'morse': False}]))
        else:
            self.set_hyperparameter('morse_transform', hp.choice('morse_transform',[{'morse': False}]))
        if self.pip:
            val =  hp.choice('pip',[{'pip': True,'degree_reduction': hp.choice('degree_reduction', [True,False])}])
            self.set_hyperparameter('pip', val)
        else:
            self.set_hyperparameter('pip', hp.choice('pip', [{'pip': False}])) 
开发者ID:CCQC,项目名称:PES-Learn,代码行数:38,代码来源:neural_network.py


注:本文中的hyperopt.hp.choice方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。