本文整理汇总了Python中horovod.torch.broadcast_parameters方法的典型用法代码示例。如果您正苦于以下问题:Python torch.broadcast_parameters方法的具体用法?Python torch.broadcast_parameters怎么用?Python torch.broadcast_parameters使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类horovod.torch
的用法示例。
在下文中一共展示了torch.broadcast_parameters方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: register_model
# 需要导入模块: from horovod import torch [as 别名]
# 或者: from horovod.torch import broadcast_parameters [as 别名]
def register_model(self, model, fp16):
# broadcast model parameters
if self.node_count > 1:
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
else:
for param in model.parameters():
torch.distributed.broadcast_multigpu([param], 0)
# register hook for reduce when backpropagate
self._parameter_names = {v: k for k, v in sorted(model.named_parameters())}
self._handles = {}
self._requires_update = set()
self._grad_accs = []
self._grad = []
self._compression = hvd.Compression.fp16 if fp16 else hvd.Compression.none
for p in model.parameters():
if p.requires_grad:
p.grad = p.data.new(p.size()).zero_()
self._requires_update.add(p)
p_tmp = p.expand_as(p)
grad_acc = p_tmp.grad_fn.next_functions[0][0]
grad_acc.register_hook(self._make_hook(p))
self._grad_accs.append(grad_acc)
示例2: train_main
# 需要导入模块: from horovod import torch [as 别名]
# 或者: from horovod.torch import broadcast_parameters [as 别名]
def train_main():
model = Net().to(device)
# optimizer = optim.SGD(model.parameters(), lr=0.05)
if hvd.rank() == 0:
print(model)
# Horovod: broadcast parameters.
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
# Horovod: scale learning rate by the number of GPUs.
lr = 0.05
optimizer = optim.SGD(model.parameters(), lr=lr * hvd.size())
# Horovod: wrap optimizer with DistributedOptimizer.
optimizer = hvd.DistributedOptimizer(optimizer,
named_parameters=model.named_parameters())
criterion = nn.BCELoss()
batch_size = 25
train_loader, train_sampler = get_train_loader(batch_size)
validation_loader, validation_sampler = get_validation_loader(batch_size)
log = get_tensorboard('simple_hvd')
epochs = 50
start_time = datetime.now()
for epoch in range(1, epochs + 1):
train(model, train_loader, train_sampler, criterion, optimizer, epoch, log)
with torch.no_grad():
if hvd.rank() == 0:
print('\nValidation:')
evaluate(model, validation_loader, validation_sampler, criterion, epoch, log)
end_time = datetime.now()
if hvd.rank() == 0:
print('Total training time: {}.'.format(end_time - start_time))
torch.save(model.state_dict(), model_file)
print('Wrote model to', model_file)
示例3: _start_sync
# 需要导入模块: from horovod import torch [as 别名]
# 或者: from horovod.torch import broadcast_parameters [as 别名]
def _start_sync(self):
hvd.broadcast_parameters(self.model.state_dict(), root_rank=0)
hvd.broadcast_optimizer_state(self.optimizer, root_rank=0)
示例4: setup_horovod
# 需要导入模块: from horovod import torch [as 别名]
# 或者: from horovod.torch import broadcast_parameters [as 别名]
def setup_horovod(model, learning_rate):
""" Setup for Horovod usage.
Args:
model(MultitaskModel): The MultitaskModel object.
learning_rate(float): Learning rate for the model.
Returns: hvd.DistributedOptimizer: Optimizer to use for computing
gradients and applying updates.
"""
# Horovod: scale learning rate by the number of GPUs.
optimizer = optim.Adam(model.parameters(), lr=learning_rate * hvd.size())
# Horovod: broadcast parameters & optimizer state.
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
hvd.broadcast_optimizer_state(optimizer, root_rank=0)
# Horovod: (optional) compression algorithm.
compression = hvd.Compression.fp16
# Horovod: wrap optimizer with DistributedOptimizer.
optimizer = hvd.DistributedOptimizer(
optimizer,
named_parameters=model.named_parameters(),
compression=compression,
)
return optimizer
示例5: horovod_train
# 需要导入模块: from horovod import torch [as 别名]
# 或者: from horovod.torch import broadcast_parameters [as 别名]
def horovod_train(self, model):
# call setup after the ddp process has connected
self.setup('fit')
if self.is_function_implemented('setup', model):
model.setup('fit')
if torch.cuda.is_available() and self.on_gpu:
# Horovod: pin GPU to local rank
assert self.root_gpu == hvd.local_rank()
torch.cuda.set_device(self.root_gpu)
model.cuda(self.root_gpu)
# avoid duplicating progress bar
if hvd.rank() != 0 and self.progress_bar_callback is not None:
self.progress_bar_callback.disable()
# CHOOSE OPTIMIZER
# allow for lr schedulers as well
self.optimizers, self.lr_schedulers, self.optimizer_frequencies = self.init_optimizers(model)
# Horovod: scale the learning rate by the number of workers to account for
# increased total batch size
for optimizer in self.optimizers:
for param_group in optimizer.param_groups:
param_group['lr'] *= hvd.size()
if self.use_amp:
# An example
model, optimizers = model.configure_apex(amp, model, self.optimizers, self.amp_level)
self.optimizers = optimizers
self.reinit_scheduler_properties(self.optimizers, self.lr_schedulers)
# Horovod: broadcast parameters & optimizer state to ensure consistent initialization
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
for optimizer in self.optimizers:
hvd.broadcast_optimizer_state(optimizer, root_rank=0)
def filter_named_parameters(model, optimizer):
opt_params = set([p for group in optimizer.param_groups for p in group.get('params', [])])
return [(name, p) for name, p in model.named_parameters() if p in opt_params]
# Horovod: wrap optimizers to perform gradient aggregation via allreduce
self.optimizers = [
hvd.DistributedOptimizer(optimizer, named_parameters=filter_named_parameters(model, optimizer))
for optimizer in self.optimizers
]
# Update logger rank info from Horovod to avoid race conditions from different ranks
# creating directories / writing files in the same locations.
self.global_rank = hvd.rank()
rank_zero_only.rank = self.global_rank
with ExitStack() as stack:
for optimizer in self.optimizers:
# Synchronization will be performed explicitly following backward()
stack.enter_context(optimizer.skip_synchronize())
self.run_pretrain_routine(model)
# Make sure all workers have finished training before returning to the user
hvd.join()