本文整理汇总了Python中horovod.torch.broadcast_optimizer_state方法的典型用法代码示例。如果您正苦于以下问题:Python torch.broadcast_optimizer_state方法的具体用法?Python torch.broadcast_optimizer_state怎么用?Python torch.broadcast_optimizer_state使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类horovod.torch
的用法示例。
在下文中一共展示了torch.broadcast_optimizer_state方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _start_sync
# 需要导入模块: from horovod import torch [as 别名]
# 或者: from horovod.torch import broadcast_optimizer_state [as 别名]
def _start_sync(self):
hvd.broadcast_parameters(self.model.state_dict(), root_rank=0)
hvd.broadcast_optimizer_state(self.optimizer, root_rank=0)
示例2: setup_horovod
# 需要导入模块: from horovod import torch [as 别名]
# 或者: from horovod.torch import broadcast_optimizer_state [as 别名]
def setup_horovod(model, learning_rate):
""" Setup for Horovod usage.
Args:
model(MultitaskModel): The MultitaskModel object.
learning_rate(float): Learning rate for the model.
Returns: hvd.DistributedOptimizer: Optimizer to use for computing
gradients and applying updates.
"""
# Horovod: scale learning rate by the number of GPUs.
optimizer = optim.Adam(model.parameters(), lr=learning_rate * hvd.size())
# Horovod: broadcast parameters & optimizer state.
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
hvd.broadcast_optimizer_state(optimizer, root_rank=0)
# Horovod: (optional) compression algorithm.
compression = hvd.Compression.fp16
# Horovod: wrap optimizer with DistributedOptimizer.
optimizer = hvd.DistributedOptimizer(
optimizer,
named_parameters=model.named_parameters(),
compression=compression,
)
return optimizer
示例3: horovod_train
# 需要导入模块: from horovod import torch [as 别名]
# 或者: from horovod.torch import broadcast_optimizer_state [as 别名]
def horovod_train(self, model):
# call setup after the ddp process has connected
self.setup('fit')
if self.is_function_implemented('setup', model):
model.setup('fit')
if torch.cuda.is_available() and self.on_gpu:
# Horovod: pin GPU to local rank
assert self.root_gpu == hvd.local_rank()
torch.cuda.set_device(self.root_gpu)
model.cuda(self.root_gpu)
# avoid duplicating progress bar
if hvd.rank() != 0 and self.progress_bar_callback is not None:
self.progress_bar_callback.disable()
# CHOOSE OPTIMIZER
# allow for lr schedulers as well
self.optimizers, self.lr_schedulers, self.optimizer_frequencies = self.init_optimizers(model)
# Horovod: scale the learning rate by the number of workers to account for
# increased total batch size
for optimizer in self.optimizers:
for param_group in optimizer.param_groups:
param_group['lr'] *= hvd.size()
if self.use_amp:
# An example
model, optimizers = model.configure_apex(amp, model, self.optimizers, self.amp_level)
self.optimizers = optimizers
self.reinit_scheduler_properties(self.optimizers, self.lr_schedulers)
# Horovod: broadcast parameters & optimizer state to ensure consistent initialization
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
for optimizer in self.optimizers:
hvd.broadcast_optimizer_state(optimizer, root_rank=0)
def filter_named_parameters(model, optimizer):
opt_params = set([p for group in optimizer.param_groups for p in group.get('params', [])])
return [(name, p) for name, p in model.named_parameters() if p in opt_params]
# Horovod: wrap optimizers to perform gradient aggregation via allreduce
self.optimizers = [
hvd.DistributedOptimizer(optimizer, named_parameters=filter_named_parameters(model, optimizer))
for optimizer in self.optimizers
]
# Update logger rank info from Horovod to avoid race conditions from different ranks
# creating directories / writing files in the same locations.
self.global_rank = hvd.rank()
rank_zero_only.rank = self.global_rank
with ExitStack() as stack:
for optimizer in self.optimizers:
# Synchronization will be performed explicitly following backward()
stack.enter_context(optimizer.skip_synchronize())
self.run_pretrain_routine(model)
# Make sure all workers have finished training before returning to the user
hvd.join()