本文整理汇总了Python中horovod.torch.DistributedOptimizer方法的典型用法代码示例。如果您正苦于以下问题:Python torch.DistributedOptimizer方法的具体用法?Python torch.DistributedOptimizer怎么用?Python torch.DistributedOptimizer使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类horovod.torch
的用法示例。
在下文中一共展示了torch.DistributedOptimizer方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: build_torch
# 需要导入模块: from horovod import torch [as 别名]
# 或者: from horovod.torch import DistributedOptimizer [as 别名]
def build_torch(self, model):
import torch
lookup = {
'sgd': torch.optim.SGD,
'adadelta': torch.optim.Adadelta,
'rmsprop': torch.optim.RMSprop,
'adam': torch.optim.Adam
}
if self.name not in lookup:
logging.warning("No optimizer '{}' found, using SGD instead".format(self.name))
self.name = 'sgd'
opt = lookup[self.name](model.parameters(), **self.config)
if self.horovod_wrapper:
import horovod.torch as hvd
opt = hvd.DistributedOptimizer(opt, named_parameters=model.named_parameters())
return opt
示例2: train_main
# 需要导入模块: from horovod import torch [as 别名]
# 或者: from horovod.torch import DistributedOptimizer [as 别名]
def train_main():
model = Net().to(device)
# optimizer = optim.SGD(model.parameters(), lr=0.05)
if hvd.rank() == 0:
print(model)
# Horovod: broadcast parameters.
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
# Horovod: scale learning rate by the number of GPUs.
lr = 0.05
optimizer = optim.SGD(model.parameters(), lr=lr * hvd.size())
# Horovod: wrap optimizer with DistributedOptimizer.
optimizer = hvd.DistributedOptimizer(optimizer,
named_parameters=model.named_parameters())
criterion = nn.BCELoss()
batch_size = 25
train_loader, train_sampler = get_train_loader(batch_size)
validation_loader, validation_sampler = get_validation_loader(batch_size)
log = get_tensorboard('simple_hvd')
epochs = 50
start_time = datetime.now()
for epoch in range(1, epochs + 1):
train(model, train_loader, train_sampler, criterion, optimizer, epoch, log)
with torch.no_grad():
if hvd.rank() == 0:
print('\nValidation:')
evaluate(model, validation_loader, validation_sampler, criterion, epoch, log)
end_time = datetime.now()
if hvd.rank() == 0:
print('Total training time: {}.'.format(end_time - start_time))
torch.save(model.state_dict(), model_file)
print('Wrote model to', model_file)
示例3: fit
# 需要导入模块: from horovod import torch [as 别名]
# 或者: from horovod.torch import DistributedOptimizer [as 别名]
def fit(self, module):
# Prepare module for training
module.trainer = self
# Update and print module configuration
prep_logger_and_checkpoint(module)
print_config(module.config)
# Send module to GPU
module = module.to('cuda')
# Configure optimizer and scheduler
module.configure_optimizers()
# Create distributed optimizer
compression = hvd.Compression.none
optimizer = hvd.DistributedOptimizer(module.optimizer,
named_parameters=module.named_parameters(), compression=compression)
scheduler = module.scheduler
# Get train and val dataloaders
train_dataloader = module.train_dataloader()
val_dataloaders = module.val_dataloader()
# Epoch loop
for epoch in range(module.current_epoch, self.max_epochs):
# Train
self.train(train_dataloader, module, optimizer)
# Validation
validation_output = self.validate(val_dataloaders, module)
# Check and save model
self.check_and_save(module, validation_output)
# Update current epoch
module.current_epoch += 1
# Take a scheduler step
scheduler.step()
示例4: _init_optimizer
# 需要导入模块: from horovod import torch [as 别名]
# 或者: from horovod.torch import DistributedOptimizer [as 别名]
def _init_optimizer(self):
optimizer = optim.SGD(
self.model.parameters(),
lr=(self.base_lr * self.batches_per_allreduce * hvd.size()),
momentum=self.momentum, weight_decay=self.wd)
steps_per_batch = self.attack_backward_steps + 1 + 100000000
if self.attack_loss == 'avg':
steps_per_batch += 1
self.optimizer = hvd.DistributedOptimizer(
optimizer, named_parameters=self.model.named_parameters(),
compression=self.compression,
backward_passes_per_step=steps_per_batch * self.batches_per_allreduce)
示例5: build
# 需要导入模块: from horovod import torch [as 别名]
# 或者: from horovod.torch import DistributedOptimizer [as 别名]
def build(self):
from keras.optimizers import deserialize
opt_config = {'class_name': self.name, 'config': self.config}
opt = deserialize(opt_config)
if self.horovod_wrapper:
import horovod.keras as hvd
if hasattr(opt, 'lr'):
opt.lr *= hvd.size()
opt = hvd.DistributedOptimizer(opt)
return opt
示例6: __init__
# 需要导入模块: from horovod import torch [as 别名]
# 或者: from horovod.torch import DistributedOptimizer [as 别名]
def __init__(self, model, params, update_lr_stepwise=False, parallel_mode='dp'):
self.params = params
self.model = model
self.update_lr_stepwise = update_lr_stepwise
self.parralle_mode = parallel_mode
self.lr = self.params['lr']
self.global_step = 1
self.global_epoch = 0
if params['optimizer'] == 'adam':
self.optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=self.lr,
betas=(0.9, 0.98), eps=1e-9)
elif params['optimizer'] == 'sgd':
self.optimizer = torch.optim.SGD(
filter(lambda p: p.requires_grad, model.parameters()), lr=self.lr, momentum=0.9)
elif params['optimizer'] == 'adadelate':
self.optimizer = torch.optim.Adadelta(
filter(lambda p: p.requires_grad, model.parameters()))
else:
raise NotImplementedError
if self.parralle_mode == 'hvd':
import horovod.torch as hvd
self.optimizer = hvd.DistributedOptimizer(self.optimizer, named_parameters=model.named_parameters())
示例7: setup_horovod
# 需要导入模块: from horovod import torch [as 别名]
# 或者: from horovod.torch import DistributedOptimizer [as 别名]
def setup_horovod(model, learning_rate):
""" Setup for Horovod usage.
Args:
model(MultitaskModel): The MultitaskModel object.
learning_rate(float): Learning rate for the model.
Returns: hvd.DistributedOptimizer: Optimizer to use for computing
gradients and applying updates.
"""
# Horovod: scale learning rate by the number of GPUs.
optimizer = optim.Adam(model.parameters(), lr=learning_rate * hvd.size())
# Horovod: broadcast parameters & optimizer state.
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
hvd.broadcast_optimizer_state(optimizer, root_rank=0)
# Horovod: (optional) compression algorithm.
compression = hvd.Compression.fp16
# Horovod: wrap optimizer with DistributedOptimizer.
optimizer = hvd.DistributedOptimizer(
optimizer,
named_parameters=model.named_parameters(),
compression=compression,
)
return optimizer
示例8: horovod_train
# 需要导入模块: from horovod import torch [as 别名]
# 或者: from horovod.torch import DistributedOptimizer [as 别名]
def horovod_train(self, model):
# call setup after the ddp process has connected
self.setup('fit')
if self.is_function_implemented('setup', model):
model.setup('fit')
if torch.cuda.is_available() and self.on_gpu:
# Horovod: pin GPU to local rank
assert self.root_gpu == hvd.local_rank()
torch.cuda.set_device(self.root_gpu)
model.cuda(self.root_gpu)
# avoid duplicating progress bar
if hvd.rank() != 0 and self.progress_bar_callback is not None:
self.progress_bar_callback.disable()
# CHOOSE OPTIMIZER
# allow for lr schedulers as well
self.optimizers, self.lr_schedulers, self.optimizer_frequencies = self.init_optimizers(model)
# Horovod: scale the learning rate by the number of workers to account for
# increased total batch size
for optimizer in self.optimizers:
for param_group in optimizer.param_groups:
param_group['lr'] *= hvd.size()
if self.use_amp:
# An example
model, optimizers = model.configure_apex(amp, model, self.optimizers, self.amp_level)
self.optimizers = optimizers
self.reinit_scheduler_properties(self.optimizers, self.lr_schedulers)
# Horovod: broadcast parameters & optimizer state to ensure consistent initialization
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
for optimizer in self.optimizers:
hvd.broadcast_optimizer_state(optimizer, root_rank=0)
def filter_named_parameters(model, optimizer):
opt_params = set([p for group in optimizer.param_groups for p in group.get('params', [])])
return [(name, p) for name, p in model.named_parameters() if p in opt_params]
# Horovod: wrap optimizers to perform gradient aggregation via allreduce
self.optimizers = [
hvd.DistributedOptimizer(optimizer, named_parameters=filter_named_parameters(model, optimizer))
for optimizer in self.optimizers
]
# Update logger rank info from Horovod to avoid race conditions from different ranks
# creating directories / writing files in the same locations.
self.global_rank = hvd.rank()
rank_zero_only.rank = self.global_rank
with ExitStack() as stack:
for optimizer in self.optimizers:
# Synchronization will be performed explicitly following backward()
stack.enter_context(optimizer.skip_synchronize())
self.run_pretrain_routine(model)
# Make sure all workers have finished training before returning to the user
hvd.join()
示例9: create_optimizer
# 需要导入模块: from horovod import torch [as 别名]
# 或者: from horovod.torch import DistributedOptimizer [as 别名]
def create_optimizer(
self,
num_train_optimization_steps,
lr=2e-5,
fp16_allreduce=False,
warmup_proportion=None,
):
"""
Method to create an BERT Optimizer based on the inputs from the user.
Args:
num_train_optimization_steps(int): Number of optimization steps.
lr (float): learning rate of the adam optimizer. defaults to 2e-5.
warmup_proportion (float, optional): proportion of training to
perform linear learning rate warmup for. e.g., 0.1 = 10% of
training. defaults to none.
fp16_allreduce(bool, optional)L if true, use fp16 compression
during allreduce.
Returns:
pytorch_pretrained_bert.optimization.BertAdam : A BertAdam optimizer with
user specified config.
"""
if self.use_distributed:
lr = lr * hvd.size()
if warmup_proportion is None:
optimizer = BertAdam(self.optimizer_params, lr=lr)
else:
optimizer = BertAdam(
self.optimizer_params,
lr=lr,
t_total=num_train_optimization_steps,
warmup=warmup_proportion,
)
if self.use_distributed:
compression = (
hvd.Compression.fp16 if fp16_allreduce else hvd.Compression.none
)
optimizer = hvd.DistributedOptimizer(
optimizer,
named_parameters=self.model.named_parameters(),
compression=compression,
)
return optimizer