本文整理汇总了Python中h5py.Group方法的典型用法代码示例。如果您正苦于以下问题:Python h5py.Group方法的具体用法?Python h5py.Group怎么用?Python h5py.Group使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类h5py
的用法示例。
在下文中一共展示了h5py.Group方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: get_naoaux
# 需要导入模块: import h5py [as 别名]
# 或者: from h5py import Group [as 别名]
def get_naoaux(self):
'''The dimension of auxiliary basis at gamma point'''
# determine naoaux with self._cderi, because DF object may be used as CD
# object when self._cderi is provided.
if self._cderi is None:
self.build()
# self._cderi['j3c/k_id/seg_id']
with addons.load(self._cderi, 'j3c/0') as feri:
if isinstance(feri, h5py.Group):
naux = feri['0'].shape[0]
else:
naux = feri.shape[0]
cell = self.cell
if (cell.dimension == 2 and cell.low_dim_ft_type != 'inf_vacuum' and
not isinstance(self._cderi, numpy.ndarray)):
with h5py.File(self._cderi, 'r') as feri:
if 'j3c-/0' in feri:
dat = feri['j3c-/0']
if isinstance(dat, h5py.Group):
naux += dat['0'].shape[0]
else:
naux += dat.shape[0]
return naux
示例2: __enter__
# 需要导入模块: import h5py [as 别名]
# 或者: from h5py import Group [as 别名]
def __enter__(self):
if isinstance(self.eri, str):
feri = self.feri = h5py.File(self.eri, 'r')
elif isinstance(self.eri, h5py.Group):
feri = self.eri
elif isinstance(getattr(self.eri, 'name', None), str):
feri = self.feri = h5py.File(self.eri.name, 'r')
elif isinstance(self.eri, numpy.ndarray):
return self.eri
else:
raise RuntimeError('Unknown eri type %s', type(self.eri))
if self.dataname is None:
return feri
else:
return feri[self.dataname]
示例3: h5py_dataset_iterator
# 需要导入模块: import h5py [as 别名]
# 或者: from h5py import Group [as 别名]
def h5py_dataset_iterator(self, g, prefix=''):
for key in g.keys():
item = g[key]
path = '{}/{}'.format(prefix, key)
keys = [i for i in item.keys()]
if isinstance(item[keys[0]], h5py.Dataset): # test for dataset
data = {'path': path}
for k in keys:
if not isinstance(item[k], h5py.Group):
dataset = np.array(item[k].value)
if type(dataset) is np.ndarray:
if dataset.size != 0:
if type(dataset[0]) is np.bytes_:
dataset = [a.decode('ascii') for a in dataset]
data.update({k: dataset})
yield data
else: # test for group (go down)
for s in self.h5py_dataset_iterator(item, path):
yield s
示例4: get_data
# 需要导入模块: import h5py [as 别名]
# 或者: from h5py import Group [as 别名]
def get_data(self, path, prefix=''):
item = self.store[path]
path = '{}/{}'.format(prefix, path)
keys = [i for i in item.keys()]
data = {'path': path}
# print(path)
for k in keys:
if not isinstance(item[k], h5py.Group):
dataset = np.array(item[k].value)
if type(dataset) is np.ndarray:
if dataset.size != 0:
if type(dataset[0]) is np.bytes_:
dataset = [a.decode('ascii') for a in dataset]
data.update({k: dataset})
return data
示例5: _parse_units
# 需要导入模块: import h5py [as 别名]
# 或者: from h5py import Group [as 别名]
def _parse_units(file, _units):
import h5py
t_units = {}
if isinstance(_units, h5py.Group):
for name in _units.keys():
value = _units[name]
dict_val = []
for val in value:
if isinstance(file[val[0]], h5py.Dataset):
dict_val.append(file[val[0]][()])
t_units[name] = dict_val
else:
break
out = [dict(zip(t_units, col)) for col in zip(*t_units.values())]
else:
out = []
for unit in _units:
group = file[unit[()][0]]
unit_dict = {}
for k in group.keys():
unit_dict[k] = group[k][()]
out.append(unit_dict)
return out
示例6: load_h5
# 需要导入模块: import h5py [as 别名]
# 或者: from h5py import Group [as 别名]
def load_h5(fname, key=None):
"""load h5 file"""
try:
hfile = h5py.File(fname,'r')
except:
assert 0, "\nload_h5()::ERROR: Cannot open <<"+str(fname)+">>\n"
if key==None:
try:
key = hfile.keys()[0]
except:
assert 0, "\nload_h5()::ERROR: File is not h5 / is empty <<"+str(fname)+">>\n"
xx = hfile[key]
if isinstance(xx, h5py.Group):
xx=dict(xx)
xx = xx[xx.keys()[0] if key==None else key]
dat = np.asarray(xx, dtype = xx.dtype)
hfile.close()
return dat
示例7: save_parameters_as_hdf5
# 需要导入模块: import h5py [as 别名]
# 或者: from h5py import Group [as 别名]
def save_parameters_as_hdf5(model, filename='model.h5'):
# Save the model parameters into a HDF5 archive
chainer.serializers.save_hdf5(filename, model)
print('model.h5 saved!\n')
# Load the saved HDF5 using h5py
print('--- The list of saved params in model.h5 ---')
f = h5py.File('model.h5', 'r')
for param_key, param in f.items():
msg = '{}:'.format(param_key)
if isinstance(param, h5py.Dataset):
msg += ' {}'.format(param.shape)
print(msg)
if isinstance(param, h5py.Group):
for child_key, child in param.items():
print(' {}:{}'.format(child_key, child.shape))
print('---------------------------------------------\n')
示例8: __init__
# 需要导入模块: import h5py [as 别名]
# 或者: from h5py import Group [as 别名]
def __init__(self, pop_name, pop_group, types_table):
self._pop_name = pop_name
self._pop_group = pop_group
self._types_table = types_table
self._nrows = 0
# For storing individual groups
self._group_map = {} # grp-id --> h5py.Group object
self._find_groups()
self._group_cache = {} # grp-id --> soneta.io.Group() object
# Refrences to most of the population's primary dataset
self._type_id_ds = pop_group[self.type_ids_column]
self._group_id_ds = pop_group[self.group_id_column]
self._group_index_ds = pop_group[self.group_index_column]
self._group_indicies = {} # grp-id --> list of rows indicies
self._group_indicies_cache_built = False
示例9: __init__
# 需要导入模块: import h5py [as 别名]
# 或者: from h5py import Group [as 别名]
def __init__(self, root_name, h5_files, h5_mode, csv_files):
"""
:param root_name: should either be 'nodes' or 'edges'
:param h5_files: file (or list of files) containing nodes/edges
:param h5_mode: currently only supporting 'r' mode in h5py
:param csv_files: file (or list of files) containing node/edge types
"""
self._root_name = root_name
self._h5_handles = [utils.load_h5(f, h5_mode) for f in utils.listify(h5_files)]
self._csv_handles = [(f, utils.load_csv(f)) for f in utils.listify(csv_files)]
# merge and create a table of the types table(s)
self._types_table = None
self._build_types_table()
# population_name->h5py.Group table (won't instantiate the population)
self._populations_groups = {}
self._store_groups()
# A map between population_name -> Population object. Population objects aren't created until called, in the
# case user wants to split populations among MPI nodes (instantiation will create node/edge indicies and other
# overhead).
self._populations_cache = {}
self.check_format()
示例10: write_attributes
# 需要导入模块: import h5py [as 别名]
# 或者: from h5py import Group [as 别名]
def write_attributes(self, h5file_group):
"""
Attribute data consists of
1. `__init__` parameters that are of type str or numerical. These are directly written into `h5py.Group.attrs`
2. lists are stored under `<h5py.Group>/__lists`
3. dicts are stored under `<h5py.Group>/__dicts`
Parameters
----------
h5file_group: h5py.Group
"""
h5file_group.attrs.create("__type", self.io_data.typename) # Record the type of the current class instance
attributes = self.io_data.attributes
for attr_name, attr_value in attributes.items():
if isinstance(attr_value, dict): # h5py does not serialize dicts automatically, so have to do it manually
group_name = "__dicts/" + attr_name
h5file_group.create_group(group_name)
io.write(attr_value, self.filename, file_handle=h5file_group[group_name])
elif isinstance(attr_value, (list, tuple)):
group_name = "__lists/" + attr_name
h5file_group.create_group(group_name)
io.write(attr_value, self.filename, file_handle=h5file_group[group_name])
else:
h5file_group.attrs[attr_name] = attr_value
示例11: to_file
# 需要导入模块: import h5py [as 别名]
# 或者: from h5py import Group [as 别名]
def to_file(self, io_data, file_handle=None):
"""
Takes the serialized IOData and writes it either to a new h5 file with file name given by `self.filename` to to
the given h5py.Group of an open h5 file.
Parameters
----------
io_data: IOData
file_handle: h5py.Group, optional
"""
self.io_data = io_data
if file_handle is None:
h5file_group = h5py.File(self.filename, 'w')
else:
h5file_group = file_handle
self.write_attributes(h5file_group)
self.write_ndarrays(h5file_group)
self.write_objects(h5file_group)
示例12: read_objects
# 需要导入模块: import h5py [as 别名]
# 或者: from h5py import Group [as 别名]
def read_objects(self, h5file_group):
"""
Read data from the given h5 file group that represents a Python object other than an ndarray, list, or dict.
Parameters
----------
h5file_group: h5py.Group
Returns
-------
dict [str, IOData]
"""
inner_objects = {}
h5file_group = h5file_group["__objects"]
for obj_name in h5file_group:
inner_objects[obj_name] = io.read(self.filename, h5file_group[obj_name])
return inner_objects
示例13: from_file
# 需要导入模块: import h5py [as 别名]
# 或者: from h5py import Group [as 别名]
def from_file(self, filename, file_handle=None):
"""
Either opens a new h5 file for reading or accesses an already opened file via the given h5.Group handle. Reads
all data from the three categories of attributes (incl. lists and dicts), ndarrays, and objects.
Parameters
----------
filename: str
file_handle: h5.Group, optional
Returns
-------
IOData
"""
if file_handle is None:
h5file_group = h5py.File(filename, 'r')
else:
h5file_group = file_handle
attributes = self.read_attributes(h5file_group)
typename = attributes['__type']
del attributes['__type']
ndarrays = self.read_ndarrays(h5file_group)
inner_objects = self.read_objects(h5file_group)
return io.IOData(typename, attributes, ndarrays, inner_objects)
示例14: __init__
# 需要导入模块: import h5py [as 别名]
# 或者: from h5py import Group [as 别名]
def __init__(self, path, mode='a'):
if isinstance(path, h5py.Group):
self.data = path
self._is_file = False
elif isinstance(path, str):
self.data = h5py.File(path, mode=mode)
self._is_file = True
elif isinstance(path, dict):
self.data = path
self._is_file = False
if mode == 'w':
self.data.clear()
# Flag to check if a dict is user defined data or a sub group:
self.data['_is_group'] = True
else:
raise TypeError('Required Group, str or dict. '
'Received: {}.'.format(type(path)))
self.read_only = mode == 'r'
示例15: dump
# 需要导入模块: import h5py [as 别名]
# 或者: from h5py import Group [as 别名]
def dump(self, target):
"""Serializes MPArray to :code:`h5py.Group`. Recover using
:func:`~load`.
:param target: :code:`h5py.Group` the instance should be saved to or
path to h5 file (it's then serialized to /)
"""
if isinstance(target, str):
import h5py
with h5py.File(target, 'w') as outfile:
return self.dump(outfile)
for prop in ('ranks', 'shape'):
# these are only saved for convenience
target.attrs[prop] = str(getattr(self, prop))
# these are actually used in MPArray.load
target.attrs['len'] = len(self)
target.attrs['canonical_form'] = self.canonical_form
for site, lten in enumerate(self._lt):
target[str(site)] = lten