本文整理汇总了Python中gym.spaces方法的典型用法代码示例。如果您正苦于以下问题:Python gym.spaces方法的具体用法?Python gym.spaces怎么用?Python gym.spaces使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类gym
的用法示例。
在下文中一共展示了gym.spaces方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: create_state_q_function_for_env
# 需要导入模块: import gym [as 别名]
# 或者: from gym import spaces [as 别名]
def create_state_q_function_for_env(env):
assert isinstance(env.observation_space, gym.spaces.Box)
ndim_obs = env.observation_space.low.size
if isinstance(env.action_space, gym.spaces.Discrete):
return q_functions.FCStateQFunctionWithDiscreteAction(
ndim_obs=ndim_obs,
n_actions=env.action_space.n,
n_hidden_channels=10,
n_hidden_layers=1)
elif isinstance(env.action_space, gym.spaces.Box):
return q_functions.FCQuadraticStateQFunction(
n_input_channels=ndim_obs,
n_dim_action=env.action_space.low.size,
n_hidden_channels=10,
n_hidden_layers=1,
action_space=env.action_space)
else:
raise NotImplementedError()
示例2: __init__
# 需要导入模块: import gym [as 别名]
# 或者: from gym import spaces [as 别名]
def __init__(self, file_name, batch_size=128, n_step=1):
# create an offline_env to do fake interaction with agent
self.num_epoch = 0
self.num_record = 0
self._offset = 0
# how many records to read from table at one time
self.batch_size = batch_size
# number of step to reserved for n-step dqn
self.n_step = n_step
# defined the shape of observation and action
# we follow the definition of gym.spaces
# `Box` for continue-space, `Discrete` for discrete-space and `Dict` for multiple input
# actually low/high limitation will not be used by agent but required by gym.spaces
self.observation_space = Box(low=-np.inf, high=np.inf, shape=(4,))
self.action_space = Discrete(n=2)
fr = open(file_name)
self.data = fr.readlines()
self.num_record = len(self.data)
fr.close()
示例3: _basic_space_to_ph_spec
# 需要导入模块: import gym [as 别名]
# 或者: from gym import spaces [as 别名]
def _basic_space_to_ph_spec(self, sp):
"""Translate a gym space object to a tuple to specify data type and shape.
Arguments:
sp (obj): basic space object of gym interface.
Returns:
a tuple used for building TensorFlow placeholders where the first element specifies `dtype` and the second one specifies `shape`.
"""
# (jones.wz) TO DO: handle gym Atari input
if isinstance(sp, gym.spaces.Box):
if len(sp.shape) == 3:
return (tf.uint8, (None, ) + sp.shape)
return (tf.float32, (None, prod(sp.shape)))
elif isinstance(sp, gym.spaces.Discrete):
return (tf.int32, (None, sp.n))
elif isinstance(sp, gym.spaces.MultiDiscrete):
return (tf.int32, (None, prod(sp.shape)))
elif isinstance(sp, gym.spaces.MultiBinary):
return (tf.int32, (None, prod(sp.shape)))
else:
raise TypeError(
"specified an unsupported space type {}".format(sp))
示例4: flatten_obs
# 需要导入模块: import gym [as 别名]
# 或者: from gym import spaces [as 别名]
def flatten_obs(self, obs):
"""reshape the multi-channel observations into a flattern array for efficient communication in distributed training.
Arguments:
obs (obj): dict or list of numpy array for multi-channel observations.
Returns:
flattened_obs (tensor): a flattened array.
"""
if isinstance(self.ob_ph_spec, list):
assert len(obs) == len(
self.observation_space
), "{} spaces for obs but {} inputs found".format(
len(self.observation_space), len(obs))
flattened_array = np.concatenate(
[np.asarray(elm).astype(np.float32) for elm in obs], axis=1)
elif isinstance(self.ob_ph_spec, OrderedDict):
array_list = []
for name in self.ob_ph_spec.keys():
array_list.append(np.asarray(obs[name]).astype(np.float32))
flattened_array = np.concatenate(array_list, axis=1)
else:
flattened_array = obs
return flattened_array
示例5: pick_action
# 需要导入模块: import gym [as 别名]
# 或者: from gym import spaces [as 别名]
def pick_action(self, state: Union[int, float, np.ndarray]
) -> Union[int, float, np.ndarray]:
""" Pick an action given a state.
Picks uniformly random from all possible actions, using the environments
action_space.sample() method.
Parameters
----------
state: int
An integer corresponding to a state of a DiscreteEnv.
Not used in this agent.
Returns
-------
Union[int, float, np.ndarray]
An action
"""
# if other spaces are needed, check if their sample method conforms with
# returned type, change if necessary.
assert isinstance(self.env.action_space,
(Box, Discrete, MultiDiscrete, MultiBinary))
return self.env.action_space.sample()
示例6: _check_image_input
# 需要导入模块: import gym [as 别名]
# 或者: from gym import spaces [as 别名]
def _check_image_input(observation_space: spaces.Box) -> None:
"""
Check that the input will be compatible with Stable-Baselines
when the observation is apparently an image.
"""
if observation_space.dtype != np.uint8:
warnings.warn("It seems that your observation is an image but the `dtype` "
"of your observation_space is not `np.uint8`. "
"If your observation is not an image, we recommend you to flatten the observation "
"to have only a 1D vector")
if np.any(observation_space.low != 0) or np.any(observation_space.high != 255):
warnings.warn("It seems that your observation space is an image but the "
"upper and lower bounds are not in [0, 255]. "
"Because the CNN policy normalize automatically the observation "
"you may encounter issue if the values are not in that range."
)
if observation_space.shape[0] < 36 or observation_space.shape[1] < 36:
warnings.warn("The minimal resolution for an image is 36x36 for the default CnnPolicy. "
"You might need to use a custom `cnn_extractor` "
"cf https://stable-baselines.readthedocs.io/en/master/guide/custom_policy.html")
示例7: _check_unsupported_obs_spaces
# 需要导入模块: import gym [as 别名]
# 或者: from gym import spaces [as 别名]
def _check_unsupported_obs_spaces(env: gym.Env, observation_space: spaces.Space) -> None:
"""Emit warnings when the observation space used is not supported by Stable-Baselines."""
if isinstance(observation_space, spaces.Dict) and not isinstance(env, gym.GoalEnv):
warnings.warn("The observation space is a Dict but the environment is not a gym.GoalEnv "
"(cf https://github.com/openai/gym/blob/master/gym/core.py), "
"this is currently not supported by Stable Baselines "
"(cf https://github.com/hill-a/stable-baselines/issues/133), "
"you will need to use a custom policy. "
)
if isinstance(observation_space, spaces.Tuple):
warnings.warn("The observation space is a Tuple,"
"this is currently not supported by Stable Baselines "
"(cf https://github.com/hill-a/stable-baselines/issues/133), "
"you will need to flatten the observation and maybe use a custom policy. "
)
示例8: _check_obs
# 需要导入模块: import gym [as 别名]
# 或者: from gym import spaces [as 别名]
def _check_obs(obs: Union[tuple, dict, np.ndarray, int],
observation_space: spaces.Space,
method_name: str) -> None:
"""
Check that the observation returned by the environment
correspond to the declared one.
"""
if not isinstance(observation_space, spaces.Tuple):
assert not isinstance(obs, tuple), ("The observation returned by the `{}()` "
"method should be a single value, not a tuple".format(method_name))
# The check for a GoalEnv is done by the base class
if isinstance(observation_space, spaces.Discrete):
assert isinstance(obs, int), "The observation returned by `{}()` method must be an int".format(method_name)
elif _enforce_array_obs(observation_space):
assert isinstance(obs, np.ndarray), ("The observation returned by `{}()` "
"method must be a numpy array".format(method_name))
assert observation_space.contains(obs), ("The observation returned by the `{}()` "
"method does not match the given observation space".format(method_name))
示例9: action_probability
# 需要导入模块: import gym [as 别名]
# 或者: from gym import spaces [as 别名]
def action_probability(self, observation, state=None, mask=None, actions=None, logp=False):
"""
If ``actions`` is ``None``, then get the model's action probability distribution from a given observation.
Depending on the action space the output is:
- Discrete: probability for each possible action
- Box: mean and standard deviation of the action output
However if ``actions`` is not ``None``, this function will return the probability that the given actions are
taken with the given parameters (observation, state, ...) on this model. For discrete action spaces, it
returns the probability mass; for continuous action spaces, the probability density. This is since the
probability mass will always be zero in continuous spaces, see http://blog.christianperone.com/2019/01/
for a good explanation
:param observation: (np.ndarray) the input observation
:param state: (np.ndarray) The last states (can be None, used in recurrent policies)
:param mask: (np.ndarray) The last masks (can be None, used in recurrent policies)
:param actions: (np.ndarray) (OPTIONAL) For calculating the likelihood that the given actions are chosen by
the model for each of the given parameters. Must have the same number of actions and observations.
(set to None to return the complete action probability distribution)
:param logp: (bool) (OPTIONAL) When specified with actions, returns probability in log-space.
This has no effect if actions is None.
:return: (np.ndarray) the model's (log) action probability
"""
pass
示例10: predict
# 需要导入模块: import gym [as 别名]
# 或者: from gym import spaces [as 别名]
def predict(self, observation, state=None, mask=None, deterministic=False):
if state is None:
state = self.initial_state
if mask is None:
mask = [False for _ in range(self.n_envs)]
observation = np.array(observation)
vectorized_env = self._is_vectorized_observation(observation, self.observation_space)
observation = observation.reshape((-1,) + self.observation_space.shape)
actions, _, states, _ = self.step(observation, state, mask, deterministic=deterministic)
clipped_actions = actions
# Clip the actions to avoid out of bound error
if isinstance(self.action_space, gym.spaces.Box):
clipped_actions = np.clip(actions, self.action_space.low, self.action_space.high)
if not vectorized_env:
if state is not None:
raise ValueError("Error: The environment must be vectorized when using recurrent policies.")
clipped_actions = clipped_actions[0]
return clipped_actions, states
示例11: __init__
# 需要导入模块: import gym [as 别名]
# 或者: from gym import spaces [as 别名]
def __init__(self, env, width, height):
if not isinstance(env.observation_space, gym.spaces.Box):
raise ValueError('Resize only works with Box environment.')
if len(env.observation_space.shape) != 2:
raise ValueError('Resize only works with 2D single channel image.')
super().__init__(env)
_low = env.observation_space.low.flatten()[0]
_high = env.observation_space.high.flatten()[0]
self._dtype = env.observation_space.dtype
self._observation_space = gym.spaces.Box(_low,
_high,
shape=[width, height],
dtype=self._dtype)
self._width = width
self._height = height
示例12: __init__
# 需要导入模块: import gym [as 别名]
# 或者: from gym import spaces [as 别名]
def __init__(self, env, n_frames):
if not isinstance(env.observation_space, gym.spaces.Box):
raise ValueError('Stack frames only works with gym.spaces.Box '
'environment.')
if len(env.observation_space.shape) != 2:
raise ValueError(
'Stack frames only works with 2D single channel images')
super().__init__(env)
self._n_frames = n_frames
self._frames = deque(maxlen=n_frames)
new_obs_space_shape = env.observation_space.shape + (n_frames, )
_low = env.observation_space.low.flatten()[0]
_high = env.observation_space.high.flatten()[0]
self._observation_space = gym.spaces.Box(
_low,
_high,
shape=new_obs_space_shape,
dtype=env.observation_space.dtype)
示例13: __init__
# 需要导入模块: import gym [as 别名]
# 或者: from gym import spaces [as 别名]
def __init__(self, env):
if not isinstance(env.observation_space, gym.spaces.Box):
raise ValueError(
'Grayscale only works with gym.spaces.Box environment.')
if len(env.observation_space.shape) != 3:
raise ValueError('Grayscale only works with 2D RGB images')
super().__init__(env)
_low = env.observation_space.low.flatten()[0]
_high = env.observation_space.high.flatten()[0]
assert _low == 0
assert _high == 255
self._observation_space = gym.spaces.Box(
_low,
_high,
shape=env.observation_space.shape[:-1],
dtype=np.uint8)
示例14: __init__
# 需要导入模块: import gym [as 别名]
# 或者: from gym import spaces [as 别名]
def __init__(self, env, body_names, radius_multiplier=1.5, agent_idx_allowed_to_lock=None,
lock_type="any_lock", ac_obs_prefix='', obj_in_game_metadata_keys=None,
agent_allowed_to_lock_keys=None):
super().__init__(env)
self.n_agents = self.unwrapped.n_agents
self.n_obj = len(body_names)
self.body_names = body_names
self.agent_idx_allowed_to_lock = np.arange(self.n_agents) if agent_idx_allowed_to_lock is None else agent_idx_allowed_to_lock
self.lock_type = lock_type
self.ac_obs_prefix = ac_obs_prefix
self.obj_in_game_metadata_keys = obj_in_game_metadata_keys
self.agent_allowed_to_lock_keys = agent_allowed_to_lock_keys
self.action_space.spaces[f'action_{ac_obs_prefix}glue'] = (
Tuple([MultiDiscrete([2] * self.n_obj) for _ in range(self.n_agents)]))
self.observation_space = update_obs_space(env, {f'{ac_obs_prefix}obj_lock': (self.n_obj, 1),
f'{ac_obs_prefix}you_lock': (self.n_agents, self.n_obj, 1),
f'{ac_obs_prefix}team_lock': (self.n_agents, self.n_obj, 1)})
self.lock_radius = radius_multiplier*self.metadata['box_size']
self.obj_locked = np.zeros((self.n_obj,), dtype=int)
示例15: __init__
# 需要导入模块: import gym [as 别名]
# 或者: from gym import spaces [as 别名]
def __init__(self, env, eat_thresh=0.5, max_food_health=10, respawn_time=np.inf,
food_rew_type='selfish', reward_scale=1.0, reward_scale_obs=False):
super().__init__(env)
self.eat_thresh = eat_thresh
self.max_food_health = max_food_health
self.respawn_time = respawn_time
self.food_rew_type = food_rew_type
self.n_agents = self.metadata['n_agents']
if type(reward_scale) not in [list, tuple, np.ndarray]:
reward_scale = [reward_scale, reward_scale]
self.reward_scale = reward_scale
self.reward_scale_obs = reward_scale_obs
# Reset obs/action space to match
self.max_n_food = self.metadata['max_n_food']
self.curr_n_food = self.metadata['curr_n_food']
self.max_food_size = self.metadata['food_size']
food_dim = 5 if self.reward_scale_obs else 4
self.observation_space = update_obs_space(self.env, {'food_obs': (self.max_n_food, food_dim),
'food_health': (self.max_n_food, 1),
'food_eat': (self.max_n_food, 1)})
self.action_space.spaces['action_eat_food'] = Tuple([MultiDiscrete([2] * self.max_n_food)
for _ in range(self.n_agents)])