本文整理汇总了Python中gym.spaces.Box方法的典型用法代码示例。如果您正苦于以下问题:Python spaces.Box方法的具体用法?Python spaces.Box怎么用?Python spaces.Box使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类gym.spaces
的用法示例。
在下文中一共展示了spaces.Box方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from gym import spaces [as 别名]
# 或者: from gym.spaces import Box [as 别名]
def __init__(self, renders=True):
# start the bullet physics server
self._renders = renders
if (renders):
p.connect(p.GUI)
else:
p.connect(p.DIRECT)
observation_high = np.array([
np.finfo(np.float32).max,
np.finfo(np.float32).max,
np.finfo(np.float32).max,
np.finfo(np.float32).max])
action_high = np.array([0.1])
self.action_space = spaces.Discrete(9)
self.observation_space = spaces.Box(-observation_high, observation_high)
self.theta_threshold_radians = 1
self.x_threshold = 2.4
self._seed()
# self.reset()
self.viewer = None
self._configure()
示例2: __init__
# 需要导入模块: from gym import spaces [as 别名]
# 或者: from gym.spaces import Box [as 别名]
def __init__(self):
self._seed()
self.viewer = None
self.world = Box2D.b2World()
self.moon = None
self.lander = None
self.particles = []
self.prev_reward = None
high = np.array([np.inf]*N_OBS_DIM) # useful range is -1 .. +1, but spikes can be higher
self.observation_space = spaces.Box(-high, high)
self.action_space = spaces.Discrete(N_ACT_DIM)
self.curr_step = None
self._reset()
示例3: __init__
# 需要导入模块: from gym import spaces [as 别名]
# 或者: from gym.spaces import Box [as 别名]
def __init__(self, env, keys=None):
"""
Initializes the Gym wrapper.
Args:
env (MujocoEnv instance): The environment to wrap.
keys (list of strings): If provided, each observation will
consist of concatenated keys from the wrapped environment's
observation dictionary. Defaults to robot-state and object-state.
"""
self.env = env
if keys is None:
assert self.env.use_object_obs, "Object observations need to be enabled."
keys = ["robot-state", "object-state"]
self.keys = keys
# set up observation and action spaces
flat_ob = self._flatten_obs(self.env.reset(), verbose=True)
self.obs_dim = flat_ob.size
high = np.inf * np.ones(self.obs_dim)
low = -high
self.observation_space = spaces.Box(low=low, high=high)
low, high = self.env.action_spec
self.action_space = spaces.Box(low=low, high=high)
示例4: observation_placeholder
# 需要导入模块: from gym import spaces [as 别名]
# 或者: from gym.spaces import Box [as 别名]
def observation_placeholder(ob_space, batch_size=None, name='Ob'):
'''
Create placeholder to feed observations into of the size appropriate to the observation space
Parameters:
----------
ob_space: gym.Space observation space
batch_size: int size of the batch to be fed into input. Can be left None in most cases.
name: str name of the placeholder
Returns:
-------
tensorflow placeholder tensor
'''
assert isinstance(ob_space, Discrete) or isinstance(ob_space, Box), \
'Can only deal with Discrete and Box observation spaces for now'
return tf.placeholder(shape=(batch_size,) + ob_space.shape, dtype=ob_space.dtype, name=name)
示例5: encode_observation
# 需要导入模块: from gym import spaces [as 别名]
# 或者: from gym.spaces import Box [as 别名]
def encode_observation(ob_space, placeholder):
'''
Encode input in the way that is appropriate to the observation space
Parameters:
----------
ob_space: gym.Space observation space
placeholder: tf.placeholder observation input placeholder
'''
if isinstance(ob_space, Discrete):
return tf.to_float(tf.one_hot(placeholder, ob_space.n))
elif isinstance(ob_space, Box):
return tf.to_float(placeholder)
else:
raise NotImplementedError
示例6: __init__
# 需要导入模块: from gym import spaces [as 别名]
# 或者: from gym.spaces import Box [as 别名]
def __init__(
self,
seed=0,
episode_len=None,
no_images=None
):
from tensorflow.examples.tutorials.mnist import input_data
# we could use temporary directory for this with a context manager and
# TemporaryDirecotry, but then each test that uses mnist would re-download the data
# this way the data is not cleaned up, but we only download it once per machine
mnist_path = osp.join(tempfile.gettempdir(), 'MNIST_data')
with filelock.FileLock(mnist_path + '.lock'):
self.mnist = input_data.read_data_sets(mnist_path)
self.np_random = np.random.RandomState()
self.np_random.seed(seed)
self.observation_space = Box(low=0.0, high=1.0, shape=(28,28,1))
self.action_space = Discrete(10)
self.episode_len = episode_len
self.time = 0
self.no_images = no_images
self.train_mode()
self.reset()
示例7: get_action_type
# 需要导入模块: from gym import spaces [as 别名]
# 或者: from gym.spaces import Box [as 别名]
def get_action_type(action_space):
'''Method to get the action type to choose prob. dist. to sample actions from NN logits output'''
if isinstance(action_space, spaces.Box):
shape = action_space.shape
assert len(shape) == 1
if shape[0] == 1:
return 'continuous'
else:
return 'multi_continuous'
elif isinstance(action_space, spaces.Discrete):
return 'discrete'
elif isinstance(action_space, spaces.MultiDiscrete):
return 'multi_discrete'
elif isinstance(action_space, spaces.MultiBinary):
return 'multi_binary'
else:
raise NotImplementedError
# action_policy base methods
示例8: set_gym_space_attr
# 需要导入模块: from gym import spaces [as 别名]
# 或者: from gym.spaces import Box [as 别名]
def set_gym_space_attr(gym_space):
'''Set missing gym space attributes for standardization'''
if isinstance(gym_space, spaces.Box):
setattr(gym_space, 'is_discrete', False)
elif isinstance(gym_space, spaces.Discrete):
setattr(gym_space, 'is_discrete', True)
setattr(gym_space, 'low', 0)
setattr(gym_space, 'high', gym_space.n)
elif isinstance(gym_space, spaces.MultiBinary):
setattr(gym_space, 'is_discrete', True)
setattr(gym_space, 'low', np.full(gym_space.n, 0))
setattr(gym_space, 'high', np.full(gym_space.n, 2))
elif isinstance(gym_space, spaces.MultiDiscrete):
setattr(gym_space, 'is_discrete', True)
setattr(gym_space, 'low', np.zeros_like(gym_space.nvec))
setattr(gym_space, 'high', np.array(gym_space.nvec))
else:
raise ValueError('gym_space not recognized')
示例9: __init__
# 需要导入模块: from gym import spaces [as 别名]
# 或者: from gym.spaces import Box [as 别名]
def __init__(self, size=2, discrete=True, partially_observable=False,
episodic=True, deterministic=False):
self.size = size
self.terminal_state = size
self.episodic = episodic
self.partially_observable = partially_observable
self.deterministic = deterministic
self.n_max_offset = 1
# (s_0, ..., s_N) + terminal state + offset
self.n_dim_obs = self.size + 1 + self.n_max_offset
self.observation_space = spaces.Box(
low=-np.inf, high=np.inf,
shape=(self.n_dim_obs,), dtype=np.float32,
)
if discrete:
self.action_space = spaces.Discrete(self.size)
else:
self.action_space = spaces.Box(
low=-1.0, high=1.0,
shape=(self.size,), dtype=np.float32,
)
示例10: __init__
# 需要导入模块: from gym import spaces [as 别名]
# 或者: from gym.spaces import Box [as 别名]
def __init__(self, env, channel_order='hwc'):
"""Warp frames to 84x84 as done in the Nature paper and later work.
To use this wrapper, OpenCV-Python is required.
"""
if not _is_cv2_available:
raise RuntimeError('Cannot import cv2 module. Please install OpenCV-Python to use WarpFrame.') # NOQA
gym.ObservationWrapper.__init__(self, env)
self.width = 84
self.height = 84
shape = {
'hwc': (self.height, self.width, 1),
'chw': (1, self.height, self.width),
}
self.observation_space = spaces.Box(
low=0, high=255,
shape=shape[channel_order], dtype=np.uint8)
示例11: observation_placeholder
# 需要导入模块: from gym import spaces [as 别名]
# 或者: from gym.spaces import Box [as 别名]
def observation_placeholder(ob_space, batch_size=None, name='Ob'):
'''
Create placeholder to feed observations into of the size appropriate to the observation space
Parameters:
----------
ob_space: gym.Space observation space
batch_size: int size of the batch to be fed into input. Can be left None in most cases.
name: str name of the placeholder
Returns:
-------
tensorflow placeholder tensor
'''
assert isinstance(ob_space, Discrete) or isinstance(ob_space, Box), \
'Can only deal with Discrete and Box observation spaces for now'
return tf.placeholder(shape=(batch_size,) + ob_space.shape, dtype=ob_space.dtype, name=name)
示例12: encode_observation
# 需要导入模块: from gym import spaces [as 别名]
# 或者: from gym.spaces import Box [as 别名]
def encode_observation(ob_space, placeholder):
'''
Encode input in the way that is appropriate to the observation space
Parameters:
----------
ob_space: gym.Space observation space
placeholder: tf.placeholder observation input placeholder
'''
if isinstance(ob_space, Discrete):
return tf.to_float(tf.one_hot(placeholder, ob_space.n))
elif isinstance(ob_space, Box):
return tf.to_float(placeholder)
else:
raise NotImplementedError
示例13: __init__
# 需要导入模块: from gym import spaces [as 别名]
# 或者: from gym.spaces import Box [as 别名]
def __init__(self, file_name, batch_size=128, n_step=1):
# create an offline_env to do fake interaction with agent
self.num_epoch = 0
self.num_record = 0
self._offset = 0
# how many records to read from table at one time
self.batch_size = batch_size
# number of step to reserved for n-step dqn
self.n_step = n_step
# defined the shape of observation and action
# we follow the definition of gym.spaces
# `Box` for continue-space, `Discrete` for discrete-space and `Dict` for multiple input
# actually low/high limitation will not be used by agent but required by gym.spaces
self.observation_space = Box(low=-np.inf, high=np.inf, shape=(4,))
self.action_space = Discrete(n=2)
fr = open(file_name)
self.data = fr.readlines()
self.num_record = len(self.data)
fr.close()
示例14: __init__
# 需要导入模块: from gym import spaces [as 别名]
# 或者: from gym.spaces import Box [as 别名]
def __init__(self, game='pong', obs_type='image', buf_size=4, gray=True,
frameskip=4, repeat_action_probability=0.):
super(MultiFrameAtariEnv, self).__init__(game=game, obs_type=obs_type,
frameskip=frameskip,
repeat_action_probability=repeat_action_probability)
self._cur_st = None
self._nx_st = None
self._img_buf = deque(maxlen=buf_size)
self._gray = gray
self._shape = (84, 84)
if self._gray:
self.observation_space = spaces.Box(low=0, high=255,
shape=(self._shape[0], self._shape[1], buf_size),
dtype=np.uint8)
else:
self.observation_space = spaces.Box(low=0, high=255,
shape=(self._shape[0], self._shape[1], 3, buf_size),
dtype=np.uint8)
self._initialize()
示例15: wrap_adv_noise_ball
# 需要导入模块: from gym import spaces [as 别名]
# 或者: from gym.spaces import Box [as 别名]
def wrap_adv_noise_ball(env_name, our_idx, multi_venv, adv_noise_params, deterministic):
adv_noise_agent_val = adv_noise_params["noise_val"]
base_policy_path = adv_noise_params["base_path"]
base_policy_type = adv_noise_params["base_type"]
base_policy = load_policy(
policy_path=base_policy_path,
policy_type=base_policy_type,
env=multi_venv,
env_name=env_name,
index=our_idx,
)
base_action_space = multi_venv.action_space.spaces[our_idx]
adv_noise_action_space = Box(
low=adv_noise_agent_val * base_action_space.low,
high=adv_noise_agent_val * base_action_space.high,
)
multi_venv = MergeAgentVecEnv(
venv=multi_venv,
policy=base_policy,
replace_action_space=adv_noise_action_space,
merge_agent_idx=our_idx,
deterministic=deterministic,
)
return multi_venv