本文整理汇总了Python中gym.envs.registration.EnvSpec方法的典型用法代码示例。如果您正苦于以下问题:Python registration.EnvSpec方法的具体用法?Python registration.EnvSpec怎么用?Python registration.EnvSpec使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类gym.envs.registration
的用法示例。
在下文中一共展示了registration.EnvSpec方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from gym.envs import registration [as 别名]
# 或者: from gym.envs.registration import EnvSpec [as 别名]
def __init__(self, env, record_video=True, video_schedule=None,
log_dir=None, timestep_limit=9999):
# Ensure the version saved to disk doesn't monitor into our log_dir
locals_no_monitor = dict(locals())
locals_no_monitor['log_dir'] = None
locals_no_monitor['record_video'] = False
locals_no_monitor['video_schedule'] = None
Serializable.quick_init(self, locals_no_monitor)
self.env = env
self._observation_space = to_rllab_space(env.observation_space)
self._action_space = to_rllab_space(env.action_space)
self.env.spec = EnvSpec('GymEnv-v0')
monitor.logger.setLevel(logging.WARNING)
if not record_video:
self.video_schedule = NoVideoSchedule()
else:
if video_schedule is None:
self.video_schedule = CappedCubicVideoSchedule()
else:
self.video_schedule = video_schedule
self.set_log_dir(log_dir)
self._horizon = timestep_limit
示例2: __init__
# 需要导入模块: from gym.envs import registration [as 别名]
# 或者: from gym.envs.registration import EnvSpec [as 别名]
def __init__(self, max_episode_steps_coeff=1, scale=20, goal_padding=2.0):
super(PointMass, self).__init__()
# define scale such that the each square in the grid is 1 x 1
self.scale = int(scale)
self.grid_size = self.scale * self.scale
self.observation_space = gym.spaces.Box(
low=np.array([0.0, 0.0]),
high=np.array([1.0, 1.0]))
self.action_space = gym.spaces.Box(
low=np.array([-np.inf, -np.inf]),
high=np.array([np.inf, np.inf]))
self.goal_padding = goal_padding
self.spec = EnvSpec(id='PointMass-v0', max_episode_steps=int(max_episode_steps_coeff*self.scale))
示例3: register
# 需要导入模块: from gym.envs import registration [as 别名]
# 或者: from gym.envs.registration import EnvSpec [as 别名]
def register(id, **kwargs):
"""Idempotent version of gym.envs.registration.registry.
Needed since aprl.envs can get imported multiple times, e.g. when deserializing policies.
"""
try:
existing_spec = registration.spec(id)
new_spec = registration.EnvSpec(id, **kwargs)
assert existing_spec.__dict__ == new_spec.__dict__
except gym.error.UnregisteredEnv: # not previously registered
registration.register(id, **kwargs)
# Low-dimensional multi-agent environments
示例4: meta_reset
# 需要导入模块: from gym.envs import registration [as 别名]
# 或者: from gym.envs.registration import EnvSpec [as 别名]
def meta_reset(self, seed):
np.random.seed(seed)
env = RandomWeightHopperEnv(rand_mass=self.rand_mass,
rand_gravity=self.rand_gravity,
rand_friction=self.rand_friction,
rand_thickness=self.rand_thickness)
# Based on Hopper-v2
spec = EnvSpec(
'RandomWeightHopperEnv-v0',
entry_point='generic_rl.envs.mujoco:RandomWeightHopperEnv',
max_episode_steps=1000,
reward_threshold=3800.0
)
env._spec = spec
env.seed(seed)
# Wrap the env as needed
env = TimeLimit(
env,
max_episode_steps=spec.max_episode_steps,
max_episode_seconds=spec.max_episode_seconds
)
self.env = env
# Fix for done flags.
self.env.reset()
self.step = env.step
self.render = env.render
self.reset = env.reset
示例5: __init__
# 需要导入模块: from gym.envs import registration [as 别名]
# 或者: from gym.envs.registration import EnvSpec [as 别名]
def __init__(self):
self.action_space = spaces.Discrete(2)
self.observation_space = DICT_SPACE
self._spec = EnvSpec("NestedDictEnv-v0")
self.steps = 0
示例6: specification
# 需要导入模块: from gym.envs import registration [as 别名]
# 或者: from gym.envs.registration import EnvSpec [as 别名]
def specification(self) -> EnvSpec:
""" Return environment specification """
raise NotImplementedError
示例7: specification
# 需要导入模块: from gym.envs import registration [as 别名]
# 或者: from gym.envs.registration import EnvSpec [as 别名]
def specification(self) -> EnvSpec:
""" Return environment specification """
return gym.spec(self.envname)
示例8: __init__
# 需要导入模块: from gym.envs import registration [as 别名]
# 或者: from gym.envs.registration import EnvSpec [as 别名]
def __init__(self, goal_reaching_thresholds=np.array([0.075, 0.075, 0.75]),
goal_not_reached_penalty=-1, goal_reached_reward=0, terminate_on_goal_reaching=True,
time_limit=1000, frameskip=1, random_goals_instead_of_standing_goal=False,
polar_coordinates: bool=False):
super().__init__()
dir = os.path.dirname(__file__)
model = load_model_from_path(dir + "/pendulum_with_goals.xml")
self.sim = MjSim(model)
self.viewer = None
self.rgb_viewer = None
self.frameskip = frameskip
self.goal = None
self.goal_reaching_thresholds = goal_reaching_thresholds
self.goal_not_reached_penalty = goal_not_reached_penalty
self.goal_reached_reward = goal_reached_reward
self.terminate_on_goal_reaching = terminate_on_goal_reaching
self.time_limit = time_limit
self.current_episode_steps_counter = 0
self.random_goals_instead_of_standing_goal = random_goals_instead_of_standing_goal
self.polar_coordinates = polar_coordinates
# spaces definition
self.action_space = spaces.Box(low=-self.sim.model.actuator_ctrlrange[:, 1],
high=self.sim.model.actuator_ctrlrange[:, 1],
dtype=np.float32)
if self.polar_coordinates:
self.observation_space = spaces.Dict({
"observation": spaces.Box(low=np.array([-np.pi, -15]),
high=np.array([np.pi, 15]),
dtype=np.float32),
"desired_goal": spaces.Box(low=np.array([-np.pi, -15]),
high=np.array([np.pi, 15]),
dtype=np.float32),
"achieved_goal": spaces.Box(low=np.array([-np.pi, -15]),
high=np.array([np.pi, 15]),
dtype=np.float32)
})
else:
self.observation_space = spaces.Dict({
"observation": spaces.Box(low=np.array([-1, -1, -15]),
high=np.array([1, 1, 15]),
dtype=np.float32),
"desired_goal": spaces.Box(low=np.array([-1, -1, -15]),
high=np.array([1, 1, 15]),
dtype=np.float32),
"achieved_goal": spaces.Box(low=np.array([-1, -1, -15]),
high=np.array([1, 1, 15]),
dtype=np.float32)
})
self.spec = EnvSpec('PendulumWithGoals-v0')
self.spec.reward_threshold = self.goal_not_reached_penalty * self.time_limit
self.reset()