本文整理汇总了Python中graph.Graph方法的典型用法代码示例。如果您正苦于以下问题:Python graph.Graph方法的具体用法?Python graph.Graph怎么用?Python graph.Graph使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类graph
的用法示例。
在下文中一共展示了graph.Graph方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: synthesize
# 需要导入模块: import graph [as 别名]
# 或者: from graph import Graph [as 别名]
def synthesize():
if not os.path.exists(hp.sampledir): os.mkdir(hp.sampledir)
# Load graph
g = Graph(mode="synthesize"); print("Graph loaded")
# Load data
texts = load_data(mode="synthesize")
saver = tf.train.Saver()
with tf.Session() as sess:
saver.restore(sess, tf.train.latest_checkpoint(hp.logdir)); print("Restored!")
# Feed Forward
## mel
y_hat = np.zeros((texts.shape[0], 200, hp.n_mels*hp.r), np.float32) # hp.n_mels*hp.r
for j in tqdm.tqdm(range(200)):
_y_hat = sess.run(g.y_hat, {g.x: texts, g.y: y_hat})
y_hat[:, j, :] = _y_hat[:, j, :]
## mag
mags = sess.run(g.z_hat, {g.y_hat: y_hat})
for i, mag in enumerate(mags):
print("File {}.wav is being generated ...".format(i+1))
audio = spectrogram2wav(mag)
write(os.path.join(hp.sampledir, '{}.wav'.format(i+1)), hp.sr, audio)
示例2: main
# 需要导入模块: import graph [as 别名]
# 或者: from graph import Graph [as 别名]
def main():
'''
Create render and a graph, get some edge calling some graph
function and draw them, finally save the results in FILENAME
Bergamo = [.337125 ,.245148]
Roma = [.4936765,.4637286]
Napoli = [.5936468,.5253573]
'''
render = Render()
#coords = load_italy_coords()
g = Graph(
points=None, oriented=False, rand=True, n=300, max_neighbours=9)
edges = g.tsp(0)
render.draw_points(g.nodes)
render.draw_lines(g.coords_edges(g.edges))
render.sur.write_to_png(FILENAME)
import pdb
pdb.set_trace()
render.draw_lines(g.coords_edges(edges), color=True, filename='tsp/tsp')
#render.draw_lines(g.coords_edges(edges), color=True, filename='kruskal/kru')
render.sur.write_to_png(FILENAME)
示例3: modelFromCheckpoint
# 需要导入模块: import graph [as 别名]
# 或者: from graph import Graph [as 别名]
def modelFromCheckpoint():
if FLAGS.baseline is not '':
return None, None
tf.reset_default_graph()
g = graph.Graph()
saver = tf.train.Saver()
sess = tf.Session()
saver.restore(sess, checkpointPath())
return g, sess
示例4: __init__
# 需要导入模块: import graph [as 别名]
# 或者: from graph import Graph [as 别名]
def __init__(self, model, summary, module_whitelist):
if isinstance(model, torch.nn.Module) is False:
raise Exception("Not a valid model, please provide a 'nn.Module' instance.")
self.model = model
self.module_whitelist = module_whitelist
self.summary = copy.deepcopy(summary)
self.forward_original_methods = {}
self.graph = graph.Graph()
self.inputs = {}
示例5: parse_profile_file_to_graph
# 需要导入模块: import graph [as 别名]
# 或者: from graph import Graph [as 别名]
def parse_profile_file_to_graph(profile_filename, directory):
gr = graph.Graph()
node_id = 0
with open(profile_filename, 'r') as f:
csv_reader = csv.reader(f)
line_id = 0
profile_data = []
prev_node = None
for line in csv_reader:
if line_id == 0:
header = line
num_minibatches = None
for header_elem in header:
if "Forward pass time" in header_elem:
num_minibatches = int(header_elem.split("(")[1].rstrip(")"))
else:
total_time = float(line[header.index("Total time")]) / num_minibatches
for i in xrange(len(header)):
if "Output Size" in header[i]:
if line[i] == '':
output_size = 0
else:
output_size = float(line[i].replace(",", ""))
break
parameter_size = float(line[header.index("Parameter Size (floats)")].replace(",", ""))
node_desc = line[header.index("Layer Type")]
node = graph.Node("node%d" % node_id, node_desc=node_desc,
compute_time=total_time * 1000,
parameter_size=(4.0 * parameter_size),
activation_size=(output_size * 4.0))
node_id += 1
if prev_node is not None:
gr.add_edge(prev_node, node)
prev_node = node
line_id += 1
gr.to_dot(os.path.join(directory, "graph.dot"))
with open(os.path.join(directory, "graph.txt"), 'w') as f:
f.write(str(gr))
return gr
示例6: __init__
# 需要导入模块: import graph [as 别名]
# 或者: from graph import Graph [as 别名]
def __init__(self, graph_cfg: Graph = None, info=None, result=None, indiv_id=None):
self.config = graph_cfg
self.result = result
self.info = info
self.indiv_id = indiv_id
self.parent_id = None
self.shared_ids = {layer.hash_id for layer in self.config.layers if layer.is_delete is False}
示例7: mutation
# 需要导入模块: import graph [as 别名]
# 或者: from graph import Graph [as 别名]
def mutation(self, indiv_id: int, graph_cfg: Graph = None, info=None):
self.result = None
if graph_cfg is not None:
self.config = graph_cfg
self.config.mutation()
self.info = info
self.parent_id = self.indiv_id
self.indiv_id = indiv_id
self.shared_ids.intersection_update({layer.hash_id for layer in self.config.layers if layer.is_delete is False})
示例8: init_population
# 需要导入模块: import graph [as 别名]
# 或者: from graph import Graph [as 别名]
def init_population(self, population_size, graph_max_layer, graph_min_layer):
"""
initialize populations for evolution tuner
"""
population = []
graph = Graph(max_layer_num=graph_max_layer, min_layer_num=graph_min_layer,
inputs=[Layer(LayerType.input.value, output=[4, 5], size='x'), Layer(LayerType.input.value, output=[4, 5], size='y')],
output=[Layer(LayerType.output.value, inputs=[4], size='x'), Layer(LayerType.output.value, inputs=[5], size='y')],
hide=[Layer(LayerType.attention.value, inputs=[0, 1], output=[2]),
Layer(LayerType.attention.value, inputs=[1, 0], output=[3])])
for _ in range(population_size):
graph_tmp = copy.deepcopy(graph)
graph_tmp.mutation()
population.append(Individual(indiv_id=self.generate_new_id(), graph_cfg=graph_tmp, result=None))
return population
示例9: __init__
# 需要导入模块: import graph [as 别名]
# 或者: from graph import Graph [as 别名]
def __init__(self, word2vec=None):
self.preprocess = TextProcessor()
self.graph = Graph()
if word2vec:
print("Loading word2vec embedding...")
self.word2vec = KeyedVectors.load_word2vec_format(word2vec, binary=True)
print("Succesfully loaded word2vec embeddings!")
else:
self.word2vec = None
示例10: init_graph
# 需要导入模块: import graph [as 别名]
# 或者: from graph import Graph [as 别名]
def init_graph(self):
self.preprocess = TextProcessor()
self.graph = Graph()
示例11: read_graph_from_adj
# 需要导入模块: import graph [as 别名]
# 或者: from graph import Graph [as 别名]
def read_graph_from_adj(adj,dataset_name):
'''Assume idx starts from *1* and are continuous. Edge shows up twice. Assume single connected component.'''
# logging.info("Reading graph from metis...")
with open("data/ind.{}.{}".format(dataset_name, 'graph'), 'rb') as f:
if sys.version_info > (3, 0):
in_file = pkl.load(f, encoding='latin1')
else:
in_file = pkl.load(f)
weighted = False
node_num = adj.shape[0]
edge_num = np.count_nonzero(adj.toarray()) * 2
graph = Graph(node_num, edge_num)
edge_cnt = 0
graph.adj_idx[0] = 0
for idx in range(node_num):
graph.node_wgt[idx] = 1
eles = in_file[idx]
j = 0
while j < len(eles):
neigh = int(eles[j]) #
if weighted:
wgt = float(eles[j+1])
else:
wgt = 1.0
graph.adj_list[edge_cnt] = neigh # self-loop included.
graph.adj_wgt[edge_cnt] = wgt
graph.degree[idx] += wgt
edge_cnt += 1
if weighted:
j += 2
else:
j += 1
graph.adj_idx[idx+1] = edge_cnt
graph.A = graph_to_adj(graph, self_loop=False)
# check connectivity in debug mode
# if ctrl.debug_mode:
# assert nx.is_connected(graph2nx(graph))
return graph, None
示例12: convert
# 需要导入模块: import graph [as 别名]
# 或者: from graph import Graph [as 别名]
def convert():
g = Graph("convert"); print("Training Graph loaded")
mfccs = load_data("convert")
with tf.Session() as sess:
# Initialize all variables
sess.run(tf.global_variables_initializer())
# Restore
logdir = hp.logdir + "/train1"
var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'net1')
saver = tf.train.Saver(var_list=var_list)
ckpt = tf.train.latest_checkpoint(logdir)
if ckpt is not None: saver.restore(sess, ckpt)
logdir = hp.logdir + "/train2"
var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'net2') +\
tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, 'training')
saver2 = tf.train.Saver(var_list=var_list)
ckpt = tf.train.latest_checkpoint(logdir)
if ckpt is not None: saver2.restore(sess, ckpt)
# Synthesize
if not os.path.exists('50lang-output'): os.mkdir('50lang-output')
mag_hats = sess.run(g.mag_hats, {g.mfccs: mfccs})
for i, mag_hat in enumerate(mag_hats):
wav = spectrogram2wav(mag_hat)
write('50lang-output/{}.wav'.format(i+1), hp.sr, wav)
示例13: eval1
# 需要导入模块: import graph [as 别名]
# 或者: from graph import Graph [as 别名]
def eval1():
# Load data
mfccs, phns = load_data(mode="eval1")
# Graph
g = Graph("eval1"); print("Evaluation Graph loaded")
logdir = hp.logdir + "/train1"
# Session
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
# Restore saved variables
var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'net1') +\
tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, 'training')
saver = tf.train.Saver(var_list=var_list)
ckpt = tf.train.latest_checkpoint(logdir)
if ckpt is not None: saver.restore(sess, ckpt)
# Writer
writer = tf.summary.FileWriter(logdir, sess.graph)
# Evaluation
merged, gs = sess.run([g.merged, g.global_step], {g.mfccs: mfccs, g.phones: phns})
# Write summaries
writer.add_summary(merged, global_step=gs)
writer.close()
示例14: train2
# 需要导入模块: import graph [as 别名]
# 或者: from graph import Graph [as 别名]
def train2():
g = Graph("train2"); print("Training Graph loaded")
with tf.Session() as sess:
# Initialize all variables
sess.run(tf.global_variables_initializer())
# Restore
logdir = hp.logdir + "/train1"
var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'net1')
saver = tf.train.Saver(var_list=var_list)
ckpt = tf.train.latest_checkpoint(logdir)
if ckpt is not None: saver.restore(sess, ckpt)
logdir = hp.logdir + "/train2"
var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'net2') +\
tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, 'training')
saver2 = tf.train.Saver(var_list=var_list)
ckpt = tf.train.latest_checkpoint(logdir)
if ckpt is not None: saver2.restore(sess, ckpt)
# Writer & Queue
writer = tf.summary.FileWriter(logdir, sess.graph)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
while 1:
for _ in tqdm(range(g.num_batch), total=g.num_batch, ncols=70, leave=False, unit='b'):
gs, _ = sess.run([g.global_step, g.train_op])
merged = sess.run(g.merged)
writer.add_summary(merged, global_step=gs)
# Save
saver2.save(sess, logdir + '/model_gs'.format(gs))
writer.close()
coord.request_stop()
coord.join(threads)
示例15: add_row
# 需要导入模块: import graph [as 别名]
# 或者: from graph import Graph [as 别名]
def add_row( self, name, scale ):
ln = Gtk.Label( name )
vlabel = Gtk.Label( "0.00 / 0.00" )
graph = Graph( scale )
self.graphs.append( graph )
self.values.append( vlabel )
numrows = len(self.graphs)
self.attach( ln, 0, 1, numrows, numrows+1, Gtk.AttachOptions.FILL, Gtk.AttachOptions.FILL )
self.attach( graph, 1, 2, numrows, numrows+1 )
self.attach( vlabel, 2, 3, numrows, numrows+1, Gtk.AttachOptions.FILL, Gtk.AttachOptions.FILL )