当前位置: 首页>>代码示例>>Python>>正文


Python types.RecognitionAudio方法代码示例

本文整理汇总了Python中google.cloud.speech.types.RecognitionAudio方法的典型用法代码示例。如果您正苦于以下问题:Python types.RecognitionAudio方法的具体用法?Python types.RecognitionAudio怎么用?Python types.RecognitionAudio使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在google.cloud.speech.types的用法示例。


在下文中一共展示了types.RecognitionAudio方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: transcribe_data_sync

# 需要导入模块: from google.cloud.speech import types [as 别名]
# 或者: from google.cloud.speech.types import RecognitionAudio [as 别名]
def transcribe_data_sync(speech_data, model='default', language_code='en-US'):
        # model in ['video', 'phone_call', 'command_and_search', 'default']

        if not gcloud_imported:
            _log.error("Cannot find google.cloud package!")
            return None
        client = speech.SpeechClient()

        audio = types.RecognitionAudio(content=speech_data)
        config = types.RecognitionConfig(
            encoding=enums.RecognitionConfig.AudioEncoding.LINEAR16,
            sample_rate_hertz=16000,
            language_code=language_code or 'en-US',
            model=model,
        )

        response = client.recognize(config, audio)
        # Each result is for a consecutive portion of the audio. Iterate through
        # them to get the transcripts for the entire audio file.
        assert len(response.results) <= 1
        for result in response.results:
            # The first alternative is the most likely one for this portion.
            # print(u'Transcript: {}'.format(result.alternatives[0].transcript))
            return result.alternatives[0].transcript 
开发者ID:daanzu,项目名称:kaldi-active-grammar,代码行数:26,代码来源:alternative_dictation.py

示例2: transcribe_gcs

# 需要导入模块: from google.cloud.speech import types [as 别名]
# 或者: from google.cloud.speech.types import RecognitionAudio [as 别名]
def transcribe_gcs(gcs_uri):
    """Transcribes the audio file specified by the gcs_uri."""
    from google.cloud import speech
    from google.cloud.speech import enums
    from google.cloud.speech import types
    client = speech.SpeechClient()

    # [START speech_python_migration_config_gcs]
    audio = types.RecognitionAudio(uri=gcs_uri)
    config = types.RecognitionConfig(
        encoding=enums.RecognitionConfig.AudioEncoding.FLAC,
        sample_rate_hertz=16000,
        language_code='en-US')
    # [END speech_python_migration_config_gcs]

    response = client.recognize(config, audio)
    # Each result is for a consecutive portion of the audio. Iterate through
    # them to get the transcripts for the entire audio file.
    for result in response.results:
        # The first alternative is the most likely one for this portion.
        print(u'Transcript: {}'.format(result.alternatives[0].transcript))
# [END speech_transcribe_sync_gcs] 
开发者ID:GoogleCloudPlatform,项目名称:python-docs-samples,代码行数:24,代码来源:transcribe.py

示例3: transcribe_gcs

# 需要导入模块: from google.cloud.speech import types [as 别名]
# 或者: from google.cloud.speech.types import RecognitionAudio [as 别名]
def transcribe_gcs(gcs_uri):
    """Asynchronously transcribes the audio file specified by the gcs_uri."""
    from google.cloud import speech
    from google.cloud.speech import enums
    from google.cloud.speech import types
    client = speech.SpeechClient()

    audio = types.RecognitionAudio(uri=gcs_uri)
    config = types.RecognitionConfig(
        encoding=enums.RecognitionConfig.AudioEncoding.FLAC,
        sample_rate_hertz=16000,
        language_code='en-US')

    operation = client.long_running_recognize(config, audio)

    print('Waiting for operation to complete...')
    response = operation.result(timeout=90)

    # Each result is for a consecutive portion of the audio. Iterate through
    # them to get the transcripts for the entire audio file.
    for result in response.results:
        # The first alternative is the most likely one for this portion.
        print(u'Transcript: {}'.format(result.alternatives[0].transcript))
        print('Confidence: {}'.format(result.alternatives[0].confidence))
# [END speech_transcribe_async_gcs] 
开发者ID:GoogleCloudPlatform,项目名称:python-docs-samples,代码行数:27,代码来源:transcribe_async.py

示例4: transcribe

# 需要导入模块: from google.cloud.speech import types [as 别名]
# 或者: from google.cloud.speech.types import RecognitionAudio [as 别名]
def transcribe(self, path):
        cache_path = path.replace('.wav', '.ggl')
        if os.path.exists(cache_path):
            with open(cache_path) as f:
                return f.read()

        with open(path, 'rb') as f:
            content = f.read()

        audio = types.RecognitionAudio(content=content)
        config = types.RecognitionConfig(
            encoding=enums.RecognitionConfig.AudioEncoding.LINEAR16,
            sample_rate_hertz=16000,
            language_code='en-US')

        response = self._client.recognize(config, audio)

        res = ' '.join(result.alternatives[0].transcript for result in response.results)
        res = res.translate(str.maketrans('', '', string.punctuation))

        with open(cache_path, 'w') as f:
            f.write(res)

        return res 
开发者ID:Picovoice,项目名称:speech-to-text-benchmark,代码行数:26,代码来源:engine.py

示例5: do_recognition

# 需要导入模块: from google.cloud.speech import types [as 别名]
# 或者: from google.cloud.speech.types import RecognitionAudio [as 别名]
def do_recognition(stream: bytes) -> Iterable:
    client = speech.SpeechClient()

    audio = types.RecognitionAudio(content=stream)
    config = types.RecognitionConfig(
        encoding=enums.RecognitionConfig.AudioEncoding.OGG_OPUS,
        sample_rate_hertz=16000,
        language_code='ru-RU',
    )
    recognition = client.long_running_recognize(config, audio).result(timeout=90)
    return [result.alternatives[0].transcript for result in recognition.results] 
开发者ID:f213,项目名称:selfmailbot,代码行数:13,代码来源:recognize.py

示例6: transcribe_gcs

# 需要导入模块: from google.cloud.speech import types [as 别名]
# 或者: from google.cloud.speech.types import RecognitionAudio [as 别名]
def transcribe_gcs(mp4_file):
    audio_file_path = process_video(mp4_file) #Create audio file

    if audio_file_path:
        bucket_name = 'test-dictation' # Your gcloud bucket name
        print(mp4_file)
        audio_file_name = os.path.basename(audio_file_path) + '.ogg'
        print(audio_file_name)

        upload_to_gcloud(bucket_name, source_file_name=audio_file_path + '.ogg', destination_blob_name=audio_file_name)

        """Asynchronously transcribes the audio file specified by the gcs_uri."""

        client = speech.SpeechClient()
        audio = types.RecognitionAudio(
            uri="gs://" + bucket_name + "/" + audio_file_name)
        config = types.RecognitionConfig(
            encoding=enums.RecognitionConfig.AudioEncoding.OGG_OPUS,
            language_code='en-US',
            sample_rate_hertz=16000,
            enable_word_time_offsets=True
        )
        operation = client.long_running_recognize(config, audio)

        if not operation.done():
            print('Waiting for results...')

        result = operation.result()


        results = result.results

        raw_text_file = open( audio_file_path + '.txt', 'w')
        for result in results:
            for alternative in result.alternatives:
                raw_text_file.write(alternative.transcript + '\n')
        raw_text_file.close() #output raw text file of transcription

        format_transcript(results, audio_file_path) #output .srt formatted version of transcription
    else:
        return 
开发者ID:Naki21,项目名称:google-speech-to-text,代码行数:43,代码来源:goog.py

示例7: get_transcripts

# 需要导入模块: from google.cloud.speech import types [as 别名]
# 或者: from google.cloud.speech.types import RecognitionAudio [as 别名]
def get_transcripts(audio_data):
    client = speech.SpeechClient()
    audio = types.RecognitionAudio(content=audio_data)
    config = types.RecognitionConfig(
        encoding=enums.RecognitionConfig.AudioEncoding.LINEAR16,
        sample_rate_hertz=16000,
        language_code='en-US'
    )
    response = client.recognize(config, audio)
    return [result.alternatives[0].transcript for result in response.results] 
开发者ID:kkroening,项目名称:ffmpeg-python,代码行数:12,代码来源:transcribe.py

示例8: transcribe_file

# 需要导入模块: from google.cloud.speech import types [as 别名]
# 或者: from google.cloud.speech.types import RecognitionAudio [as 别名]
def transcribe_file(speech_file):
    """Transcribe the given audio file."""
    from google.cloud import speech
    from google.cloud.speech import enums
    from google.cloud.speech import types
    import io
    client = speech.SpeechClient()

    # [START speech_python_migration_sync_request]
    # [START speech_python_migration_config]
    with io.open(speech_file, 'rb') as audio_file:
        content = audio_file.read()

    audio = types.RecognitionAudio(content=content)
    config = types.RecognitionConfig(
        encoding=enums.RecognitionConfig.AudioEncoding.LINEAR16,
        sample_rate_hertz=16000,
        language_code='en-US')
    # [END speech_python_migration_config]

    # [START speech_python_migration_sync_response]
    response = client.recognize(config, audio)
    # [END speech_python_migration_sync_request]
    # Each result is for a consecutive portion of the audio. Iterate through
    # them to get the transcripts for the entire audio file.
    for result in response.results:
        # The first alternative is the most likely one for this portion.
        print(u'Transcript: {}'.format(result.alternatives[0].transcript))
    # [END speech_python_migration_sync_response]
# [END speech_transcribe_sync]


# [START speech_transcribe_sync_gcs] 
开发者ID:GoogleCloudPlatform,项目名称:python-docs-samples,代码行数:35,代码来源:transcribe.py

示例9: transcribe_file

# 需要导入模块: from google.cloud.speech import types [as 别名]
# 或者: from google.cloud.speech.types import RecognitionAudio [as 别名]
def transcribe_file(speech_file):
    """Transcribe the given audio file asynchronously."""
    from google.cloud import speech
    from google.cloud.speech import enums
    from google.cloud.speech import types
    client = speech.SpeechClient()

    # [START speech_python_migration_async_request]
    with io.open(speech_file, 'rb') as audio_file:
        content = audio_file.read()

    audio = types.RecognitionAudio(content=content)
    config = types.RecognitionConfig(
        encoding=enums.RecognitionConfig.AudioEncoding.LINEAR16,
        sample_rate_hertz=16000,
        language_code='en-US')

    # [START speech_python_migration_async_response]
    operation = client.long_running_recognize(config, audio)
    # [END speech_python_migration_async_request]

    print('Waiting for operation to complete...')
    response = operation.result(timeout=90)

    # Each result is for a consecutive portion of the audio. Iterate through
    # them to get the transcripts for the entire audio file.
    for result in response.results:
        # The first alternative is the most likely one for this portion.
        print(u'Transcript: {}'.format(result.alternatives[0].transcript))
        print('Confidence: {}'.format(result.alternatives[0].confidence))
    # [END speech_python_migration_async_response]
# [END speech_transcribe_async]


# [START speech_transcribe_async_gcs] 
开发者ID:GoogleCloudPlatform,项目名称:python-docs-samples,代码行数:37,代码来源:transcribe_async.py

示例10: transcribe_file_with_word_time_offsets

# 需要导入模块: from google.cloud.speech import types [as 别名]
# 或者: from google.cloud.speech.types import RecognitionAudio [as 别名]
def transcribe_file_with_word_time_offsets(speech_file):
    """Transcribe the given audio file synchronously and output the word time
    offsets."""
    from google.cloud import speech
    from google.cloud.speech import enums
    from google.cloud.speech import types
    client = speech.SpeechClient()

    with io.open(speech_file, 'rb') as audio_file:
        content = audio_file.read()

    audio = types.RecognitionAudio(content=content)
    config = types.RecognitionConfig(
        encoding=enums.RecognitionConfig.AudioEncoding.LINEAR16,
        sample_rate_hertz=16000,
        language_code='en-US',
        enable_word_time_offsets=True)

    response = client.recognize(config, audio)

    for result in response.results:
        alternative = result.alternatives[0]
        print(u'Transcript: {}'.format(alternative.transcript))

        for word_info in alternative.words:
            word = word_info.word
            start_time = word_info.start_time
            end_time = word_info.end_time
            print('Word: {}, start_time: {}, end_time: {}'.format(
                word,
                start_time.seconds + start_time.nanos * 1e-9,
                end_time.seconds + end_time.nanos * 1e-9))


# [START speech_transcribe_async_word_time_offsets_gcs] 
开发者ID:GoogleCloudPlatform,项目名称:python-docs-samples,代码行数:37,代码来源:transcribe_word_time_offsets.py

示例11: run_quickstart

# 需要导入模块: from google.cloud.speech import types [as 别名]
# 或者: from google.cloud.speech.types import RecognitionAudio [as 别名]
def run_quickstart():
    # [START speech_quickstart]
    import io
    import os

    # Imports the Google Cloud client library
    # [START speech_python_migration_imports]
    from google.cloud import speech
    from google.cloud.speech import enums
    from google.cloud.speech import types
    # [END speech_python_migration_imports]

    # Instantiates a client
    # [START speech_python_migration_client]
    client = speech.SpeechClient()
    # [END speech_python_migration_client]

    # The name of the audio file to transcribe
    file_name = os.path.join(
        os.path.dirname(__file__),
        'resources',
        'audio.raw')

    # Loads the audio into memory
    with io.open(file_name, 'rb') as audio_file:
        content = audio_file.read()
        audio = types.RecognitionAudio(content=content)

    config = types.RecognitionConfig(
        encoding=enums.RecognitionConfig.AudioEncoding.LINEAR16,
        sample_rate_hertz=16000,
        language_code='en-US')

    # Detects speech in the audio file
    response = client.recognize(config, audio)

    for result in response.results:
        print('Transcript: {}'.format(result.alternatives[0].transcript))
    # [END speech_quickstart] 
开发者ID:GoogleCloudPlatform,项目名称:python-docs-samples,代码行数:41,代码来源:quickstart.py

示例12: cloud_speech_transcribe

# 需要导入模块: from google.cloud.speech import types [as 别名]
# 或者: from google.cloud.speech.types import RecognitionAudio [as 别名]
def cloud_speech_transcribe(self,speech_file,language):
        client = speech.SpeechClient()
        with io.open(speech_file, 'rb') as audio_file:
            content = audio_file.read()
        audio = types.RecognitionAudio(content=content)
        config = types.RecognitionConfig(
            encoding=enums.RecognitionConfig.AudioEncoding.LINEAR16,
            sample_rate_hertz=44100,
            language_code=language)
        response = client.recognize(config, audio)
        for result in response.results:
            transcribedtext=u'{}'.format(result.alternatives[0].transcript)
        return transcribedtext 
开发者ID:shivasiddharth,项目名称:GassistPi,代码行数:15,代码来源:main.py


注:本文中的google.cloud.speech.types.RecognitionAudio方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。