本文整理汇总了Python中gin.unlock_config方法的典型用法代码示例。如果您正苦于以下问题:Python gin.unlock_config方法的具体用法?Python gin.unlock_config怎么用?Python gin.unlock_config使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类gin
的用法示例。
在下文中一共展示了gin.unlock_config方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _runSingleTrainingStep
# 需要导入模块: import gin [as 别名]
# 或者: from gin import unlock_config [as 别名]
def _runSingleTrainingStep(self, architecture, loss_fn, penalty_fn):
parameters = {
"architecture": architecture,
"lambda": 1,
"z_dim": 128,
}
with gin.unlock_config():
gin.bind_parameter("penalty.fn", penalty_fn)
gin.bind_parameter("loss.fn", loss_fn)
model_dir = self._get_empty_model_dir()
run_config = tf.contrib.tpu.RunConfig(
model_dir=model_dir,
tpu_config=tf.contrib.tpu.TPUConfig(iterations_per_loop=1))
dataset = datasets.get_dataset("cifar10")
gan = SSGAN(
dataset=dataset,
parameters=parameters,
model_dir=model_dir,
g_optimizer_fn=tf.train.AdamOptimizer,
g_lr=0.0002,
rotated_batch_size=4)
estimator = gan.as_estimator(run_config, batch_size=2, use_tpu=False)
estimator.train(gan.input_fn, steps=1)
示例2: _runSingleTrainingStep
# 需要导入模块: import gin [as 别名]
# 或者: from gin import unlock_config [as 别名]
def _runSingleTrainingStep(self, architecture, loss_fn, penalty_fn):
parameters = {
"architecture": architecture,
"lambda": 1,
"z_dim": 128,
}
with gin.unlock_config():
gin.bind_parameter("penalty.fn", penalty_fn)
gin.bind_parameter("loss.fn", loss_fn)
dataset = datasets.get_dataset("cifar10")
gan = ModularGAN(
dataset=dataset,
parameters=parameters,
model_dir=self.model_dir,
conditional="biggan" in architecture)
estimator = gan.as_estimator(self.run_config, batch_size=2, use_tpu=False)
estimator.train(gan.input_fn, steps=1)
示例3: _runSingleTrainingStep
# 需要导入模块: import gin [as 别名]
# 或者: from gin import unlock_config [as 别名]
def _runSingleTrainingStep(self, architecture, loss_fn, penalty_fn,
labeled_dataset):
parameters = {
"architecture": architecture,
"lambda": 1,
"z_dim": 120,
}
with gin.unlock_config():
gin.bind_parameter("penalty.fn", penalty_fn)
gin.bind_parameter("loss.fn", loss_fn)
model_dir = self._get_empty_model_dir()
run_config = tf.contrib.tpu.RunConfig(
model_dir=model_dir,
tpu_config=tf.contrib.tpu.TPUConfig(iterations_per_loop=1))
dataset = datasets.get_dataset("cifar10")
gan = ModularGAN(
dataset=dataset,
parameters=parameters,
conditional=True,
model_dir=model_dir)
estimator = gan.as_estimator(run_config, batch_size=2, use_tpu=False)
estimator.train(gan.input_fn, steps=1)
示例4: testUnlabledDatasetRaisesError
# 需要导入模块: import gin [as 别名]
# 或者: from gin import unlock_config [as 别名]
def testUnlabledDatasetRaisesError(self):
parameters = {
"architecture": c.RESNET_CIFAR_ARCH,
"lambda": 1,
"z_dim": 120,
}
with gin.unlock_config():
gin.bind_parameter("loss.fn", loss_lib.hinge)
# Use dataset without labels.
dataset = datasets.get_dataset("celeb_a")
model_dir = self._get_empty_model_dir()
with self.assertRaises(ValueError):
gan = ModularGAN(
dataset=dataset,
parameters=parameters,
conditional=True,
model_dir=model_dir)
del gan
示例5: estimator
# 需要导入模块: import gin [as 别名]
# 或者: from gin import unlock_config [as 别名]
def estimator(self, vocabulary, init_checkpoint=None, disable_tpu=False):
if not self._tpu or disable_tpu:
with gin.unlock_config():
gin.bind_parameter("utils.get_variable_dtype.slice_dtype", "float32")
gin.bind_parameter(
"utils.get_variable_dtype.activation_dtype", "float32")
return utils.get_estimator(
model_type=self._model_type,
vocabulary=vocabulary,
layout_rules=self._layout_rules,
mesh_shape=mtf.Shape([]) if disable_tpu else self._mesh_shape,
mesh_devices=self._mesh_devices,
model_dir=self._model_dir,
batch_size=self.batch_size,
sequence_length=self._sequence_length,
autostack=self._autostack,
learning_rate_schedule=self._learning_rate_schedule,
keep_checkpoint_max=self._keep_checkpoint_max,
save_checkpoints_steps=self._save_checkpoints_steps,
optimizer=self._optimizer,
predict_fn=self._predict_fn,
variable_filter=self._variable_filter,
ensemble_inputs=self._ensemble_inputs,
use_tpu=None if disable_tpu else self._tpu,
tpu_job_name=self._tpu_job_name,
iterations_per_loop=self._iterations_per_loop,
cluster=self._cluster,
init_checkpoint=init_checkpoint)
示例6: eval
# 需要导入模块: import gin [as 别名]
# 或者: from gin import unlock_config [as 别名]
def eval(self, mixture_or_task_name, checkpoint_steps=None, summary_dir=None,
split="validation"):
"""Evaluate the model on the given Mixture or Task.
Args:
mixture_or_task_name: str, the name of the Mixture or Task to evaluate on.
Must be pre-registered in the global `TaskRegistry` or
`MixtureRegistry.`
checkpoint_steps: int, list of ints, or None. If an int or list of ints,
evaluation will be run on the checkpoint files in `model_dir` whose
global steps are closest to the global steps provided. If None, run eval
continuously waiting for new checkpoints. If -1, get the latest
checkpoint from the model directory.
summary_dir: str, path to write TensorBoard events file summaries for
eval. If None, use model_dir/eval_{split}.
split: str, the mixture/task split to evaluate on.
"""
if checkpoint_steps == -1:
checkpoint_steps = _get_latest_checkpoint_from_dir(self._model_dir)
vocabulary = t5.models.mesh_transformer.get_vocabulary(mixture_or_task_name)
dataset_fn = functools.partial(
t5.models.mesh_transformer.mesh_eval_dataset_fn,
mixture_or_task_name=mixture_or_task_name,
)
with gin.unlock_config():
gin.parse_config_file(_operative_config_path(self._model_dir))
utils.eval_model(self.estimator(vocabulary), vocabulary,
self._sequence_length, self.batch_size, split,
self._model_dir, dataset_fn, summary_dir, checkpoint_steps)
示例7: finetune
# 需要导入模块: import gin [as 别名]
# 或者: from gin import unlock_config [as 别名]
def finetune(self, mixture_or_task_name, finetune_steps, pretrained_model_dir,
pretrained_checkpoint_step=-1, split="train"):
"""Finetunes a model from an existing checkpoint.
Args:
mixture_or_task_name: str, the name of the Mixture or Task to evaluate on.
Must be pre-registered in the global `TaskRegistry` or
`MixtureRegistry.`
finetune_steps: int, the number of additional steps to train for.
pretrained_model_dir: str, directory with pretrained model checkpoints and
operative config.
pretrained_checkpoint_step: int, checkpoint to initialize weights from. If
-1 (default), use the latest checkpoint from the pretrained model
directory.
split: str, the mixture/task split to finetune on.
"""
if pretrained_checkpoint_step == -1:
checkpoint_step = _get_latest_checkpoint_from_dir(pretrained_model_dir)
else:
checkpoint_step = pretrained_checkpoint_step
with gin.unlock_config():
gin.parse_config_file(_operative_config_path(pretrained_model_dir))
model_ckpt = "model.ckpt-" + str(checkpoint_step)
self.train(mixture_or_task_name, checkpoint_step + finetune_steps,
init_checkpoint=os.path.join(pretrained_model_dir, model_ckpt),
split=split)
示例8: predict
# 需要导入模块: import gin [as 别名]
# 或者: from gin import unlock_config [as 别名]
def predict(self, input_file, output_file, checkpoint_steps=-1,
beam_size=1, temperature=1.0, vocabulary=None):
"""Predicts targets from the given inputs.
Args:
input_file: str, path to a text file containing newline-separated input
prompts to predict from.
output_file: str, path prefix of output file to write predictions to. Note
the checkpoint step will be appended to the given filename.
checkpoint_steps: int, list of ints, or None. If an int or list of ints,
inference will be run on the checkpoint files in `model_dir` whose
global steps are closest to the global steps provided. If None, run
inference continuously waiting for new checkpoints. If -1, get the
latest checkpoint from the model directory.
beam_size: int, a number >= 1 specifying the number of beams to use for
beam search.
temperature: float, a value between 0 and 1 (must be 0 if beam_size > 1)
0.0 means argmax, 1.0 means sample according to predicted distribution.
vocabulary: vocabularies.Vocabulary object to use for tokenization, or
None to use the default SentencePieceVocabulary.
"""
# TODO(sharannarang) : It would be nice to have a function like
# load_checkpoint that loads the model once and then call decode_from_file
# multiple times without having to restore the checkpoint weights again.
# This would be particularly useful in colab demo.
if checkpoint_steps == -1:
checkpoint_steps = _get_latest_checkpoint_from_dir(self._model_dir)
with gin.unlock_config():
gin.parse_config_file(_operative_config_path(self._model_dir))
gin.bind_parameter("Bitransformer.decode.beam_size", beam_size)
gin.bind_parameter("Bitransformer.decode.temperature", temperature)
if vocabulary is None:
vocabulary = t5.data.get_default_vocabulary()
utils.infer_model(
self.estimator(vocabulary), vocabulary, self._sequence_length,
self.batch_size, self._model_type, self._model_dir, checkpoint_steps,
input_file, output_file)
示例9: score
# 需要导入模块: import gin [as 别名]
# 或者: from gin import unlock_config [as 别名]
def score(self,
inputs,
targets,
scores_file=None,
checkpoint_steps=-1,
vocabulary=None):
"""Computes log-likelihood of target per example in targets.
Args:
inputs: optional - a string (filename), or a list of strings (inputs)
targets: a string (filename), or a list of strings (targets)
scores_file: str, path to write example scores to, one per line.
checkpoint_steps: int, list of ints, or None. If an int or list of ints,
inference will be run on the checkpoint files in `model_dir` whose
global steps are closest to the global steps provided. If None, run
inference continuously waiting for new checkpoints. If -1, get the
latest checkpoint from the model directory.
vocabulary: vocabularies.Vocabulary object to use for tokenization, or
None to use the default SentencePieceVocabulary.
"""
if checkpoint_steps == -1:
checkpoint_steps = _get_latest_checkpoint_from_dir(self._model_dir)
with gin.unlock_config():
gin.parse_config_file(_operative_config_path(self._model_dir))
# The following config setting ensures we do scoring instead of inference.
gin.bind_parameter("tpu_estimator_model_fn.score_in_predict_mode", True)
if vocabulary is None:
vocabulary = t5.data.get_default_vocabulary()
utils.score_from_strings(self.estimator(vocabulary), vocabulary,
self._model_type, self.batch_size,
self._sequence_length, self._model_dir,
checkpoint_steps, inputs, targets, scores_file)
示例10: testSingleTrainingStepArchitectures
# 需要导入模块: import gin [as 别名]
# 或者: from gin import unlock_config [as 别名]
def testSingleTrainingStepArchitectures(
self, use_predictor, project_y=True, self_supervision="none"):
parameters = {
"architecture": c.RESNET_BIGGAN_ARCH,
"lambda": 1,
"z_dim": 120,
}
with gin.unlock_config():
gin.bind_parameter("ModularGAN.conditional", True)
gin.bind_parameter("loss.fn", loss_lib.hinge)
gin.bind_parameter("S3GAN.use_predictor", use_predictor)
gin.bind_parameter("S3GAN.project_y", project_y)
gin.bind_parameter("S3GAN.self_supervision", self_supervision)
# Fake ImageNet dataset by overriding the properties.
dataset = datasets.get_dataset("imagenet_128")
model_dir = self._get_empty_model_dir()
run_config = tf.contrib.tpu.RunConfig(
model_dir=model_dir,
tpu_config=tf.contrib.tpu.TPUConfig(iterations_per_loop=1))
gan = S3GAN(
dataset=dataset,
parameters=parameters,
model_dir=model_dir,
g_optimizer_fn=tf.train.AdamOptimizer,
g_lr=0.0002,
rotated_batch_fraction=2)
estimator = gan.as_estimator(run_config, batch_size=8, use_tpu=False)
estimator.train(gan.input_fn, steps=1)
示例11: parse_cmdline_gin_configurations
# 需要导入模块: import gin [as 别名]
# 或者: from gin import unlock_config [as 别名]
def parse_cmdline_gin_configurations():
"""Parse Gin configurations from all command-line sources."""
with gin.unlock_config():
gin.parse_config_files_and_bindings(
FLAGS.gin_config, FLAGS.gin_bindings, finalize_config=True)
示例12: load_operative_gin_configurations
# 需要导入模块: import gin [as 别名]
# 或者: from gin import unlock_config [as 别名]
def load_operative_gin_configurations(operative_config_dir):
"""Load operative Gin configurations from the given directory."""
gin_log_file = operative_config_path(operative_config_dir)
with gin.unlock_config():
gin.parse_config_file(gin_log_file)
gin.finalize()
logging.info('Operative Gin configurations loaded from %s.', gin_log_file)