当前位置: 首页>>代码示例>>Python>>正文


Python models.LdaMulticore方法代码示例

本文整理汇总了Python中gensim.models.LdaMulticore方法的典型用法代码示例。如果您正苦于以下问题:Python models.LdaMulticore方法的具体用法?Python models.LdaMulticore怎么用?Python models.LdaMulticore使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在gensim.models的用法示例。


在下文中一共展示了models.LdaMulticore方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: create_lda_model

# 需要导入模块: from gensim import models [as 别名]
# 或者: from gensim.models import LdaMulticore [as 别名]
def create_lda_model(self, **kwargs):
        """ Create a Latent Dirichlet Allocation (LDA) model from the
            entire words database table """
        corpus_tfidf = self.load_tfidf_corpus()
        if self._dictionary is None:
            self.load_dictionary()
        # Initialize an LDA transformation
        lda = models.LdaMulticore(
            corpus_tfidf,
            id2word=self._dictionary,
            num_topics=self._dimensions,
            **kwargs
        )
        if self._verbose:
            lda.print_topics(num_topics=self._dimensions)
        # Save the generated model
        lda.save(self._LDA_MODEL_FILE.format(self._dimensions)) 
开发者ID:mideind,项目名称:Greynir,代码行数:19,代码来源:builder.py

示例2: build_topic_model_from_corpus

# 需要导入模块: from gensim import models [as 别名]
# 或者: from gensim.models import LdaMulticore [as 别名]
def build_topic_model_from_corpus(corpus, dictionary):
    """
    Builds a topic model with the given corpus and dictionary.
    The model is built using Latent Dirichlet Allocation

    :type corpus list
    :parameter corpus: a list of bag of words, each bag of words represents a
    document
    :type dictionary: gensim.corpora.Dictionary
    :parameter dictionary: a Dictionary object that contains the words that are
    permitted to belong to the document, words that are not in this dictionary
    will be ignored
    :rtype: gensim.models.ldamodel.LdaModel
    :return: an LdaModel built using the reviews contained in the records
    parameter
    """

    # numpy.random.seed(0)
    if Constants.LDA_MULTICORE:
        print('%s: lda multicore' % time.strftime("%Y/%m/%d-%H:%M:%S"))
        topic_model = LdaMulticore(
            corpus, id2word=dictionary,
            num_topics=Constants.TOPIC_MODEL_NUM_TOPICS,
            passes=Constants.TOPIC_MODEL_PASSES,
            iterations=Constants.TOPIC_MODEL_ITERATIONS,
            workers=Constants.NUM_CORES - 1)
    else:
        print('%s: lda monocore' % time.strftime("%Y/%m/%d-%H:%M:%S"))
        topic_model = ldamodel.LdaModel(
            corpus, id2word=dictionary,
            num_topics=Constants.TOPIC_MODEL_NUM_TOPICS,
            passes=Constants.TOPIC_MODEL_PASSES,
            iterations=Constants.TOPIC_MODEL_ITERATIONS)

    return topic_model 
开发者ID:melqkiades,项目名称:yelp,代码行数:37,代码来源:lda_context_utils.py

示例3: load_lda_model

# 需要导入模块: from gensim import models [as 别名]
# 或者: from gensim.models import LdaMulticore [as 别名]
def load_lda_model(self):
        """ Load a previously generated LDA model """
        self._model = models.LdaMulticore.load(
            self._LDA_MODEL_FILE.format(self._dimensions), mmap="r"
        )
        self._model_name = "lda" 
开发者ID:mideind,项目名称:Greynir,代码行数:8,代码来源:builder.py

示例4: topic_analysis

# 需要导入模块: from gensim import models [as 别名]
# 或者: from gensim.models import LdaMulticore [as 别名]
def topic_analysis(corpus, dictionary, models_path, technique):

    import uuid
    uuid = str(uuid.uuid4())
    print("[BLOCK] Starting models for context")
    sys.stdout.flush()

    if technique == "all" or technique == "hdp":
        t1 = time()
        # HDP model
        model = HdpModel(corpus, id2word=dictionary)
        model.save("%s/hdp_%s" % (models_path, uuid))
        del model
        t2 = time()
        print("[BLOCK] Training time for HDP model: %s" % (round(t2-t1, 2)))
        sys.stdout.flush()

    if technique == "all" or technique == "ldap":
        t1 = time()
        # Parallel LDA model
        model = LdaMulticore(corpus, id2word=dictionary, num_topics=100,  workers=23, passes=20)
        model.save("%s/lda_parallel_%s" % (models_path, uuid))
        del model
        t2 = time()
        print("[BLOCK] Training time for LDA multicore: %s" % (round(t2-t1, 2)))
    sys.stdout.flush()

    if technique == "all" or technique == "lsa":
        t1 = time()
        # LSA model
        model = LsiModel(corpus, id2word=dictionary, num_topics=400)
        model.save("%s/lsa_%s" % (models_path, uuid))
        del model
        t2 = time()
        print("[BLOCK] Training time for LSA: %s" % (round(t2-t1, 2)))
        sys.stdout.flush()

    if technique == "all" or technique == "ldao":
        t1 = time()
        # Online LDA model
        model = LdaModel(corpus, id2word=dictionary, num_topics=100, update_every=1, chunksize=10000, passes=5)
        model.save("%s/lda_online_%s" % (models_path, uuid))
        t2 = time()
        print("[BLOCK] Training time for LDA online: %s" % (round(t2-t1, 2)))
        sys.stdout.flush()

    if technique == "all" or technique == "lda":
        t1 = time()
        # Offline LDA model
        model = LdaModel(corpus, id2word=dictionary, num_topics=100,  update_every=0, passes=20)
        model.save("%s/lda_offline_%s" % (models_path, uuid))
        del model
        t2 = time()
        print("[BLOCK] Training time for LDA offline: %s" % (round(t2-t1, 2)))
        sys.stdout.flush() 
开发者ID:kafkasl,项目名称:contextualLSTM,代码行数:57,代码来源:topics_analysis.py


注:本文中的gensim.models.LdaMulticore方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。