本文整理汇总了Python中filterpy.kalman.KalmanFilter方法的典型用法代码示例。如果您正苦于以下问题:Python kalman.KalmanFilter方法的具体用法?Python kalman.KalmanFilter怎么用?Python kalman.KalmanFilter使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类filterpy.kalman
的用法示例。
在下文中一共展示了kalman.KalmanFilter方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from filterpy import kalman [as 别名]
# 或者: from filterpy.kalman import KalmanFilter [as 别名]
def __init__(self,bbox):
"""
Initialises a tracker using initial bounding box.
"""
#define constant velocity model
self.kf = KalmanFilter(dim_x=7, dim_z=4)
self.kf.F = np.array([[1,0,0,0,1,0,0],[0,1,0,0,0,1,0],[0,0,1,0,0,0,1],[0,0,0,1,0,0,0], [0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]])
self.kf.H = np.array([[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0]])
self.kf.R[2:,2:] *= 10.
self.kf.P[4:,4:] *= 1000. #give high uncertainty to the unobservable initial velocities
self.kf.P *= 10.
self.kf.Q[-1,-1] *= 0.01
self.kf.Q[4:,4:] *= 0.01
self.kf.x[:4] = convert_bbox_to_z(bbox)
self.time_since_update = 0
self.id = KalmanBoxTracker.count
KalmanBoxTracker.count += 1
self.history = []
self.hits = 0
self.hit_streak = 0
self.age = 0
示例2: __init__
# 需要导入模块: from filterpy import kalman [as 别名]
# 或者: from filterpy.kalman import KalmanFilter [as 别名]
def __init__(self,bbox,img=None):
"""
Initialises a tracker using initial bounding box.
"""
#define constant velocity model
self.kf = KalmanFilter(dim_x=7, dim_z=4)
self.kf.F = np.array([[1,0,0,0,1,0,0],[0,1,0,0,0,1,0],[0,0,1,0,0,0,1],[0,0,0,1,0,0,0], [0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]])
self.kf.H = np.array([[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0]])
self.kf.R[2:,2:] *= 10.
self.kf.P[4:,4:] *= 1000. #give high uncertainty to the unobservable initial velocities
self.kf.P *= 10.
self.kf.Q[-1,-1] *= 0.01
self.kf.Q[4:,4:] *= 0.01
self.kf.x[:4] = convert_bbox_to_z(bbox)
self.time_since_update = 0
self.id = KalmanBoxTracker.count
KalmanBoxTracker.count += 1
self.history = []
self.hits = 0
self.hit_streak = 0
self.age = 0
示例3: __init__
# 需要导入模块: from filterpy import kalman [as 别名]
# 或者: from filterpy.kalman import KalmanFilter [as 别名]
def __init__(self,bbox):
"""
Initialises a tracker using initial bounding box.
"""
#define constant velocity model
self.kf = KalmanFilter(dim_x=7, dim_z=4)
self.kf.F = np.array([[1,0,0,0,1,0,0],[0,1,0,0,0,1,0],[0,0,1,0,0,0,1],[0,0,0,1,0,0,0], [0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]])
self.kf.H = np.array([[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0]])
self.kf.R[2:,2:] *= 10.
self.kf.P[4:,4:] *= 1000. #give high uncertainty to the unobservable initial velocities
self.kf.P *= 10.
self.kf.Q[-1,-1] *= 0.01
self.kf.Q[4:,4:] *= 0.01
self.kf.x[:4] = convert_bbox_to_z(bbox)
self.time_since_update = 0
self.id = KalmanBoxTracker.count
KalmanBoxTracker.count += 1
self.history = []
self.hits = 0
self.hit_streak = 0
self.age = 0
开发者ID:Akhtar303,项目名称:Vehicle-Detection-and-Tracking-Usig-YOLO-and-Deep-Sort-with-Keras-and-Tensorflow,代码行数:25,代码来源:sort.py
示例4: __init__
# 需要导入模块: from filterpy import kalman [as 别名]
# 或者: from filterpy.kalman import KalmanFilter [as 别名]
def __init__(self, dim_state, dim_control, dim_measurement,
initial_state_mean, initial_state_covariance,
matrix_F, matrix_B,
process_noise_Q,
matrix_H, measurement_noise_R):
filter = KalmanFilter(dim_x=dim_state, dim_u=dim_control, dim_z=dim_measurement)
filter.x = initial_state_mean
filter.P = initial_state_covariance
filter.Q = process_noise_Q
filter.F = matrix_F
filter.B = matrix_B
filter.H = matrix_H
filter.R = measurement_noise_R # covariance matrix
super().__init__(filter)
示例5: const_vel_filter
# 需要导入模块: from filterpy import kalman [as 别名]
# 或者: from filterpy.kalman import KalmanFilter [as 别名]
def const_vel_filter(dt, x0=0, x_ndim=1, P_diag=(1., 1.), R_std=1.,
Q_var=0.0001):
""" helper, constructs 1d, constant velocity filter"""
f = KalmanFilter(dim_x=2, dim_z=1)
if x_ndim == 1:
f.x = np.array([x0, 0.])
else:
f.x = np.array([[x0, 0.]]).T
f.F = np.array([[1., dt],
[0., 1.]])
f.H = np.array([[1., 0.]])
f.P = np.diag(P_diag)
f.R = np.eye(1) * (R_std**2)
f.Q = Q_discrete_white_noise(2, dt, Q_var)
return f
示例6: const_vel_filter_2d
# 需要导入模块: from filterpy import kalman [as 别名]
# 或者: from filterpy.kalman import KalmanFilter [as 别名]
def const_vel_filter_2d(dt, x_ndim=1, P_diag=(1., 1, 1, 1), R_std=1.,
Q_var=0.0001):
""" helper, constructs 1d, constant velocity filter"""
kf = KalmanFilter(dim_x=4, dim_z=2)
kf.x = np.array([[0., 0., 0., 0.]]).T
kf.P *= np.diag(P_diag)
kf.F = np.array([[1., dt, 0., 0.],
[0., 1., 0., 0.],
[0., 0., 1., dt],
[0., 0., 0., 1.]])
kf.H = np.array([[1., 0, 0, 0],
[0., 0, 1, 0]])
kf.R *= np.eye(2) * (R_std**2)
q = Q_discrete_white_noise(dim=2, dt=dt, var=Q_var)
kf.Q = block_diag(q, q)
return kf
示例7: test_batch_filter
# 需要导入模块: from filterpy import kalman [as 别名]
# 或者: from filterpy.kalman import KalmanFilter [as 别名]
def test_batch_filter():
f = KalmanFilter(dim_x=2, dim_z=1)
f.x = np.array([2., 0]) # initial state (location and velocity)
f.F = np.array([[1., 1.],
[0., 1.]]) # state transition matrix
f.H = np.array([[1., 0.]]) # Measurement function
f.P *= 1000. # covariance matrix
f.R = 5 # state uncertainty
f.Q = 0.0001 # process uncertainty
zs = [None, 1., 2.]
m, c, _, _ = f.batch_filter(zs, update_first=False)
m, c, _, _ = f.batch_filter(zs, update_first=True)
示例8: test_z_checks
# 需要导入模块: from filterpy import kalman [as 别名]
# 或者: from filterpy.kalman import KalmanFilter [as 别名]
def test_z_checks():
kf = KalmanFilter(dim_x=3, dim_z=1)
kf.update(3.)
kf.update([3])
kf.update((3))
kf.update([[3]])
kf.update(np.array([[3]]))
try:
kf.update([[3, 3]])
assert False, "accepted bad z shape"
except ValueError:
pass
kf = KalmanFilter(dim_x=3, dim_z=2)
kf.update([3, 4])
kf.update([[3, 4]])
kf.update(np.array([[3, 4]]))
kf.update(np.array([[3, 4]]).T)
示例9: test_misshapen
# 需要导入模块: from filterpy import kalman [as 别名]
# 或者: from filterpy.kalman import KalmanFilter [as 别名]
def test_misshapen():
"""Ensure we get a ValueError if the filter banks are not designed
properly
"""
ca = KalmanFilter(3, 1)
cv = KalmanFilter(2, 1)
trans = np.array([[0.97, 0.03],
[0.03, 0.97]])
try:
IMMEstimator([ca, cv], (0.5, 0.5), trans)
assert "IMM should raise ValueError on filter banks with filters of different sizes"
except ValueError:
pass
try:
IMMEstimator([], (0.5, 0.5), trans)
assert "Should raise ValueError on empty bank"
except ValueError:
pass
示例10: __init__
# 需要导入模块: from filterpy import kalman [as 别名]
# 或者: from filterpy.kalman import KalmanFilter [as 别名]
def __init__(self, bbox):
"""
Initialises a tracker using initial bounding box.
"""
# define constant velocity model
# x, y,s,a, dy, dy, ds
self.kf = KalmanFilter(dim_x=7, dim_z=4)
self.kf.F = np.array(
[[1, 0, 0, 0, 1, 0, 0],
[0, 1, 0, 0, 0, 1, 0],
[0, 0, 1, 0, 0, 0, 1],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 1]])
self.kf.H = np.array(
[[1, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0]])
self.kf.R[2:, 2:] *= 10.
self.kf.P[
4:,
4:] *= 1000. # give high uncertainty to the unobservable initial
# velocities
self.kf.P *= 10.
self.kf.Q[-1, -1] *= 0.01
self.kf.Q[4:, 4:] *= 0.01
self.kf.R *= 0.01
self.kf.x[:4] = convert_bbox_to_z(bbox)
self.time_since_update = 0
self.id = KalmanBoxTracker.count
KalmanBoxTracker.count += 1
self.history = []
self.hits = 0
self.hit_streak = 0
self.age = 0
self.lost = False
示例11: test_equations
# 需要导入模块: from filterpy import kalman [as 别名]
# 或者: from filterpy.kalman import KalmanFilter [as 别名]
def test_equations(self):
data = Tensor([[-50., 50., 1.]])[:, :, None]
#
_design = simple_mv_velocity_design(dims=1)
torch_kf = KalmanFilter(processes=_design.processes.values(), measures=_design.measures)
batch_design = torch_kf.design.for_batch(1, 1)
pred = torch_kf(data)
#
filter_kf = filterpy_KalmanFilter(dim_x=2, dim_z=1)
filter_kf.x = batch_design.initial_mean.detach().numpy().T
filter_kf.P = batch_design.initial_covariance.detach().numpy().squeeze(0)
filter_kf.F = batch_design.F(0)[0].detach().numpy()
filter_kf.H = batch_design.H(0)[0].detach().numpy()
filter_kf.R = batch_design.R(0)[0].detach().numpy()
filter_kf.Q = batch_design.Q(0)[0].detach().numpy()
filter_kf.states = []
for t in range(data.shape[1]):
filter_kf.states.append(filter_kf.x)
filter_kf.update(data[:, t, :])
filter_kf.predict()
filterpy_states = np.stack(filter_kf.states).squeeze()
kf_states = pred.means.detach().numpy().squeeze()
for r, c in product(*[range(x) for x in kf_states.shape]):
self.assertAlmostEqual(filterpy_states[r, c], kf_states[r, c], places=3)
示例12: __init__
# 需要导入模块: from filterpy import kalman [as 别名]
# 或者: from filterpy.kalman import KalmanFilter [as 别名]
def __init__(self, bbox):
"""
Initialises a tracker using initial bounding box.
"""
# define constant velocity model
self.kf = KalmanFilter(dim_x=7, dim_z=4)
self.kf.F = np.array(
[[1, 0, 0, 0, 1, 0, 0], [0, 1, 0, 0, 0, 1, 0], [0, 0, 1, 0, 0, 0, 1], [0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 1]])
self.kf.H = np.array(
[[1, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0]])
self.kf.R[2:, 2:] *= 10.
self.kf.P[4:, 4:] *= 1000. # give high uncertainty to the unobservable initial velocities
self.kf.P *= 10.
self.kf.Q[-1, -1] *= 0.01
self.kf.Q[4:, 4:] *= 0.01
self.kf.x[:4] = convert_bbox_to_z(bbox)
self.time_since_update = 0
self.id = KalmanBoxTracker.count
KalmanBoxTracker.count += 1
self.history = []
self.hits = 0
self.hit_streak = 0
self.age = 0
示例13: test_procedural_batch_filter
# 需要导入模块: from filterpy import kalman [as 别名]
# 或者: from filterpy.kalman import KalmanFilter [as 别名]
def test_procedural_batch_filter():
f = KalmanFilter(dim_x=2, dim_z=1)
f.x = np.array([2., 0])
f.F = np.array([[1., 1.],
[0., 1.]])
f.H = np.array([[1., 0.]])
f.P = np.eye(2) * 1000.
f.R = np.eye(1) * 5
f.Q = Q_discrete_white_noise(2, 1., 0.0001)
f.test_matrix_dimensions()
x = np.array([2., 0])
F = np.array([[1., 1.],
[0., 1.]])
H = np.array([[1., 0.]])
P = np.eye(2) * 1000.
R = np.eye(1) * 5
Q = Q_discrete_white_noise(2, 1., 0.0001)
zs = [13., None, 1., 2.] * 10
m, c, _, _ = f.batch_filter(zs, update_first=False)
n = len(zs)
mp, cp, _, _ = batch_filter(x, P, zs, [F]*n, [Q]*n, [H]*n, [R]*n)
for x1, x2 in zip(m, mp):
assert np.allclose(x1, x2)
for p1, p2 in zip(c, cp):
assert np.allclose(p1, p2)
示例14: test_default_dims
# 需要导入模块: from filterpy import kalman [as 别名]
# 或者: from filterpy.kalman import KalmanFilter [as 别名]
def test_default_dims():
kf = KalmanFilter(dim_x=3, dim_z=1)
kf.predict()
kf.update(np.array([[1.]]).T)
示例15: make_cv_filter
# 需要导入模块: from filterpy import kalman [as 别名]
# 或者: from filterpy.kalman import KalmanFilter [as 别名]
def make_cv_filter(dt, noise_factor):
cvfilter = KalmanFilter(dim_x = 2, dim_z=1)
cvfilter.x = array([0., 0.])
cvfilter.P *= 3
cvfilter.R *= noise_factor**2
cvfilter.F = array([[1, dt],
[0, 1]], dtype=float)
cvfilter.H = array([[1, 0]], dtype=float)
cvfilter.Q = Q_discrete_white_noise(dim=2, dt=dt, var=0.02)
return cvfilter