当前位置: 首页>>代码示例>>Python>>正文


Python test.im_detect方法代码示例

本文整理汇总了Python中fast_rcnn.test.im_detect方法的典型用法代码示例。如果您正苦于以下问题:Python test.im_detect方法的具体用法?Python test.im_detect怎么用?Python test.im_detect使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在fast_rcnn.test的用法示例。


在下文中一共展示了test.im_detect方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _get_feature_scale

# 需要导入模块: from fast_rcnn import test [as 别名]
# 或者: from fast_rcnn.test import im_detect [as 别名]
def _get_feature_scale(self, num_images=100):
        TARGET_NORM = 20.0 # Magic value from traditional R-CNN
        _t = Timer()
        roidb = self.imdb.roidb
        total_norm = 0.0
        count = 0.0
        inds = npr.choice(xrange(self.imdb.num_images), size=num_images,
                          replace=False)
        for i_, i in enumerate(inds):
            im = cv2.imread(self.imdb.image_path_at(i))
            if roidb[i]['flipped']:
                im = im[:, ::-1, :]
            _t.tic()
            scores, boxes = im_detect(self.net, im, roidb[i]['boxes'])
            _t.toc()
            feat = self.net.blobs[self.layer].data
            total_norm += np.sqrt((feat ** 2).sum(axis=1)).sum()
            count += feat.shape[0]
            print('{}/{}: avg feature norm: {:.3f}'.format(i_ + 1, num_images,
                                                           total_norm / count))

        return TARGET_NORM * 1.0 / (total_norm / count) 
开发者ID:playerkk,项目名称:face-py-faster-rcnn,代码行数:24,代码来源:train_svms.py

示例2: demo

# 需要导入模块: from fast_rcnn import test [as 别名]
# 或者: from fast_rcnn.test import im_detect [as 别名]
def demo(net, image_name):
    """Detect object classes in an image using pre-computed object proposals."""

    # Load the demo image
    im_file = os.path.join(cfg.DATA_DIR, 'demo', image_name)
    im = cv2.imread(im_file)

    # Detect all object classes and regress object bounds
    timer = Timer()
    timer.tic()
    scores, boxes = im_detect(net, im)
    timer.toc()
    print ('Detection took {:.3f}s for '
           '{:d} object proposals').format(timer.total_time, boxes.shape[0])

    # Visualize detections for each class
    CONF_THRESH = 0.8
    NMS_THRESH = 0.3
    for cls_ind, cls in enumerate(CLASSES[1:]):
        cls_ind += 1 # because we skipped background
        cls_boxes = boxes[:, 4*cls_ind:4*(cls_ind + 1)]
        cls_scores = scores[:, cls_ind]
        dets = np.hstack((cls_boxes,
                          cls_scores[:, np.newaxis])).astype(np.float32)
        keep = nms(dets, NMS_THRESH)
        dets = dets[keep, :]
        vis_detections(im, cls, dets, thresh=CONF_THRESH) 
开发者ID:playerkk,项目名称:face-py-faster-rcnn,代码行数:29,代码来源:demo.py

示例3: get_pos_examples

# 需要导入模块: from fast_rcnn import test [as 别名]
# 或者: from fast_rcnn.test import im_detect [as 别名]
def get_pos_examples(self):
        counts = self._get_pos_counts()
        for i in xrange(len(counts)):
            self.trainers[i].alloc_pos(counts[i])

        _t = Timer()
        roidb = self.imdb.roidb
        num_images = len(roidb)
        # num_images = 100
        for i in xrange(num_images):
            im = cv2.imread(self.imdb.image_path_at(i))
            if roidb[i]['flipped']:
                im = im[:, ::-1, :]
            gt_inds = np.where(roidb[i]['gt_classes'] > 0)[0]
            gt_boxes = roidb[i]['boxes'][gt_inds]
            _t.tic()
            scores, boxes = im_detect(self.net, im, gt_boxes)
            _t.toc()
            feat = self.net.blobs[self.layer].data
            for j in xrange(1, self.imdb.num_classes):
                cls_inds = np.where(roidb[i]['gt_classes'][gt_inds] == j)[0]
                if len(cls_inds) > 0:
                    cls_feat = feat[cls_inds, :]
                    self.trainers[j].append_pos(cls_feat)

            print 'get_pos_examples: {:d}/{:d} {:.3f}s' \
                  .format(i + 1, len(roidb), _t.average_time) 
开发者ID:playerkk,项目名称:face-py-faster-rcnn,代码行数:29,代码来源:train_svms.py

示例4: train_with_hard_negatives

# 需要导入模块: from fast_rcnn import test [as 别名]
# 或者: from fast_rcnn.test import im_detect [as 别名]
def train_with_hard_negatives(self):
        _t = Timer()
        roidb = self.imdb.roidb
        num_images = len(roidb)
        # num_images = 100
        for i in xrange(num_images):
            im = cv2.imread(self.imdb.image_path_at(i))
            if roidb[i]['flipped']:
                im = im[:, ::-1, :]
            _t.tic()
            scores, boxes = im_detect(self.net, im, roidb[i]['boxes'])
            _t.toc()
            feat = self.net.blobs[self.layer].data
            for j in xrange(1, self.imdb.num_classes):
                hard_inds = \
                    np.where((scores[:, j] > self.hard_thresh) &
                             (roidb[i]['gt_overlaps'][:, j].toarray().ravel() <
                              self.neg_iou_thresh))[0]
                if len(hard_inds) > 0:
                    hard_feat = feat[hard_inds, :].copy()
                    new_w_b = \
                        self.trainers[j].append_neg_and_retrain(feat=hard_feat)
                    if new_w_b is not None:
                        self.update_net(j, new_w_b[0], new_w_b[1])

            print(('train_with_hard_negatives: '
                   '{:d}/{:d} {:.3f}s').format(i + 1, len(roidb),
                                               _t.average_time)) 
开发者ID:playerkk,项目名称:face-py-faster-rcnn,代码行数:30,代码来源:train_svms.py

示例5: demo

# 需要导入模块: from fast_rcnn import test [as 别名]
# 或者: from fast_rcnn.test import im_detect [as 别名]
def demo(sess, net, image_name):
    """Detect object classes in an image using pre-computed object proposals."""

    # Load the demo image
    im_file = os.path.join(cfg.DATA_DIR, 'demo', image_name)
    #im_file = os.path.join('/home/corgi/Lab/label/pos_frame/ACCV/training/000001/',image_name)
    im = cv2.imread(im_file)

    # Detect all object classes and regress object bounds
    timer = Timer()
    timer.tic()
    scores, boxes = im_detect(sess, net, im)
    timer.toc()
    print ('Detection took {:.3f}s for '
           '{:d} object proposals').format(timer.total_time, boxes.shape[0])

    # Visualize detections for each class
    im = im[:, :, (2, 1, 0)]
    fig, ax = plt.subplots(figsize=(12, 12))
    ax.imshow(im, aspect='equal')

    CONF_THRESH = 0.8
    NMS_THRESH = 0.3
    for cls_ind, cls in enumerate(CLASSES[1:]):
        cls_ind += 1 # because we skipped background
        cls_boxes = boxes[:, 4*cls_ind:4*(cls_ind + 1)]
        cls_scores = scores[:, cls_ind]
        dets = np.hstack((cls_boxes,
                          cls_scores[:, np.newaxis])).astype(np.float32)
        keep = nms(dets, NMS_THRESH)
        dets = dets[keep, :]
        vis_detections(im, cls, dets, ax, thresh=CONF_THRESH) 
开发者ID:smallcorgi,项目名称:Faster-RCNN_TF,代码行数:34,代码来源:demo.py

示例6: execute

# 需要导入模块: from fast_rcnn import test [as 别名]
# 或者: from fast_rcnn.test import im_detect [as 别名]
def execute(self, data, batch_size):
        ret = []
        for i in range(batch_size):
            img_array = np.asarray(bytearray(data[i].read()), dtype=np.uint8)
            im = cv2.imdecode(img_array, -1)

            scores, boxes = im_detect(self.net, im) 

            ret_val=str(scores) + '\n' + str(boxes) + "\n"
            ret.append(ret_val)
        return ret 
开发者ID:ucloud,项目名称:uai-sdk,代码行数:13,代码来源:demo_service.py

示例7: demo

# 需要导入模块: from fast_rcnn import test [as 别名]
# 或者: from fast_rcnn.test import im_detect [as 别名]
def demo(net, image_name, classes):
    """Detect object classes in an image using pre-computed object proposals."""

    # Load pre-computed Selected Search object proposals
    box_file = os.path.join(cfg.ROOT_DIR, 'data', 'demo',
                            image_name + '_boxes.mat')
    obj_proposals = sio.loadmat(box_file)['boxes']

    # Load the demo image
    im_file = os.path.join(cfg.ROOT_DIR, 'data', 'demo', image_name + '.jpg')
    im = cv2.imread(im_file)

    # Detect all object classes and regress object bounds
    timer = Timer()
    timer.tic()
    scores, boxes = im_detect(net, im, obj_proposals, len(classes))
    timer.toc()
    print ('Detection took {:.3f}s for '
           '{:d} object proposals').format(timer.total_time, boxes.shape[0])

    # Visualize detections for each class
    CONF_THRESH = 0.8
    NMS_THRESH = 0.3
    for cls in classes:
        cls_ind = CLASSES.index(cls)
        cls_boxes = boxes[:, 4*cls_ind:4*(cls_ind + 1)]
        cls_scores = scores[:, cls_ind]
        dets = np.hstack((cls_boxes,
                          cls_scores[:, np.newaxis])).astype(np.float32)
        keep = nms(dets, NMS_THRESH)
        dets = dets[keep, :]
        print 'All {} detections with p({} | box) >= {:.1f}'.format(cls, cls,
                                                                    CONF_THRESH)
        vis_detections(im, cls, dets, thresh=CONF_THRESH) 
开发者ID:tanshen,项目名称:SubCNN,代码行数:36,代码来源:demo.py

示例8: demo

# 需要导入模块: from fast_rcnn import test [as 别名]
# 或者: from fast_rcnn.test import im_detect [as 别名]
def demo(net, image_name):
    """Detect object classes in an image using pre-computed object proposals."""

    # Load the demo image
    im_file = os.path.join(cfg.DATA_DIR, 'demo', image_name)
    im = cv2.imread(im_file)

    # Detect all object classes and regress object bounds
    timer = Timer()
    timer.tic()
    scores, boxes = im_detect(net, im)
    timer.toc()
    print ('Detection took {:.3f}s for '
           '{:d} object proposals').format(timer.total_time, boxes.shape[0])

    # Visualize detections for each class
    CONF_THRESH = 0.8
    NMS_THRESH = 0.3
    for cls_ind, cls in enumerate(CLASSES[1:]):
        cls_ind += 1 # because we skipped background
        cls_boxes = boxes[:, 4:8]
        cls_scores = scores[:, cls_ind]
        dets = np.hstack((cls_boxes,
                          cls_scores[:, np.newaxis])).astype(np.float32)
        keep = nms(dets, NMS_THRESH)
        dets = dets[keep, :]
        vis_detections(im, cls, dets, thresh=CONF_THRESH) 
开发者ID:YuwenXiong,项目名称:py-R-FCN,代码行数:29,代码来源:demo_rfcn.py


注:本文中的fast_rcnn.test.im_detect方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。