本文整理汇总了Python中faiss.GpuIndexFlatConfig方法的典型用法代码示例。如果您正苦于以下问题:Python faiss.GpuIndexFlatConfig方法的具体用法?Python faiss.GpuIndexFlatConfig怎么用?Python faiss.GpuIndexFlatConfig使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类faiss
的用法示例。
在下文中一共展示了faiss.GpuIndexFlatConfig方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_knn_search
# 需要导入模块: import faiss [as 别名]
# 或者: from faiss import GpuIndexFlatConfig [as 别名]
def test_knn_search(size=10000, gpu_id=None):
x = np.random.rand(size, 512)
x = x.reshape(x.shape[0], -1).astype('float32')
d = x.shape[1]
tic = time.time()
if gpu_id is None:
index = faiss.IndexFlatL2(d)
else:
cfg = faiss.GpuIndexFlatConfig()
cfg.useFloat16 = False
cfg.device = gpu_id
flat_config = [cfg]
resources = [faiss.StandardGpuResources()]
index = faiss.GpuIndexFlatL2(resources[0], d, flat_config[0])
index.add(x)
print('Index built in {} sec'.format(time.time() - tic))
distances, I = index.search(x, 21)
print('Searched in {} sec'.format(time.time() - tic))
print(distances.shape)
print(I.shape)
print(distances[:5])
print(I[:5])
示例2: test_nmi_faiss
# 需要导入模块: import faiss [as 别名]
# 或者: from faiss import GpuIndexFlatConfig [as 别名]
def test_nmi_faiss(embeddings, labels):
res = faiss.StandardGpuResources()
flat_config = faiss.GpuIndexFlatConfig()
flat_config.device = 0
unique_labels = np.unique(labels)
d = embeddings.shape[1]
kmeans = faiss.Clustering(d, unique_labels.size)
kmeans.verbose = True
kmeans.niter = 300
kmeans.nredo = 10
kmeans.seed = 0
index = faiss.GpuIndexFlatL2(res, d, flat_config)
kmeans.train(embeddings, index)
dists, pred_labels = index.search(embeddings, 1)
pred_labels = pred_labels.squeeze()
nmi = normalized_mutual_info_score(labels, pred_labels)
print("NMI: {}".format(nmi))
return nmi
示例3: reserve_faiss_gpu_memory
# 需要导入模块: import faiss [as 别名]
# 或者: from faiss import GpuIndexFlatConfig [as 别名]
def reserve_faiss_gpu_memory(gpu_id=0):
"""
Reserves around 2.4 Gb memory on Titan Xp.
`r = reserve_faiss_gpu_memory()`
To release the memory run `del r`
Something like 200 Mb will still be hold afterwards.
"""
res = faiss.StandardGpuResources()
cfg = faiss.GpuIndexFlatConfig()
cfg.useFloat16 = False
cfg.device = gpu_id
index = faiss.GpuIndexFlatL2(res, 2048, cfg)
return index, res
示例4: run_kmeans
# 需要导入模块: import faiss [as 别名]
# 或者: from faiss import GpuIndexFlatConfig [as 别名]
def run_kmeans(x, nmb_clusters, verbose=False):
"""Runs kmeans on 1 GPU.
Args:
x: data
nmb_clusters (int): number of clusters
Returns:
list: ids of data in each cluster
"""
n_data, d = x.shape
# faiss implementation of k-means
clus = faiss.Clustering(d, nmb_clusters)
# Change faiss seed at each k-means so that the randomly picked
# initialization centroids do not correspond to the same feature ids
# from an epoch to another.
clus.seed = np.random.randint(1234)
clus.niter = 20
clus.max_points_per_centroid = 10000000
res = faiss.StandardGpuResources()
flat_config = faiss.GpuIndexFlatConfig()
flat_config.useFloat16 = False
flat_config.device = 0
index = faiss.GpuIndexFlatL2(res, d, flat_config)
# perform the training
clus.train(x, index)
_, I = index.search(x, 1)
losses = faiss.vector_to_array(clus.obj)
if verbose:
print('k-means loss evolution: {0}'.format(losses))
return [int(n[0]) for n in I], losses[-1]
示例5: knn_faiss
# 需要导入模块: import faiss [as 别名]
# 或者: from faiss import GpuIndexFlatConfig [as 别名]
def knn_faiss(feats, k):
import torch
import faiss
import pdb
N, dim = feats.shape
res = faiss.StandardGpuResources()
feats /= np.linalg.norm(feats).reshape(-1, 1)
flat_config = faiss.GpuIndexFlatConfig()
flat_config.device = int(torch.cuda.device_count()) - 1
index = faiss.GpuIndexFlatL2(res, dim, flat_config)
index.add(feats)
D, I = index.search(feats, k + 1)
pdb.set_trace()
示例6: __init__
# 需要导入模块: import faiss [as 别名]
# 或者: from faiss import GpuIndexFlatConfig [as 别名]
def __init__(self, opt):
super(ChamferLoss, self).__init__()
self.opt = opt
self.dimension = 3
self.k = 1
# we need only a StandardGpuResources per GPU
self.res = faiss.StandardGpuResources()
self.res.setTempMemoryFraction(0.1)
self.flat_config = faiss.GpuIndexFlatConfig()
self.flat_config.device = opt.gpu_id
# place holder
self.forward_loss = torch.FloatTensor([0])
self.backward_loss = torch.FloatTensor([0])
示例7: get_nn_avg_dist
# 需要导入模块: import faiss [as 别名]
# 或者: from faiss import GpuIndexFlatConfig [as 别名]
def get_nn_avg_dist(emb, query, knn):
"""
Compute the average distance of the `knn` nearest neighbors
for a given set of embeddings and queries.
Use Faiss if available.
"""
if FAISS_AVAILABLE:
emb = emb.cpu().numpy()
query = query.cpu().numpy()
if hasattr(faiss, 'StandardGpuResources'):
# gpu mode
res = faiss.StandardGpuResources()
config = faiss.GpuIndexFlatConfig()
config.device = 0
index = faiss.GpuIndexFlatIP(res, emb.shape[1], config)
else:
# cpu mode
index = faiss.IndexFlatIP(emb.shape[1])
index.add(emb)
distances, _ = index.search(query, knn)
return distances.mean(1)
else:
bs = 1024
all_distances = []
emb = emb.transpose(0, 1).contiguous()
for i in range(0, query.shape[0], bs):
distances = query[i:i + bs].mm(emb)
best_distances, _ = distances.topk(knn, dim=1, largest=True, sorted=True)
all_distances.append(best_distances.mean(1).cpu())
all_distances = torch.cat(all_distances)
return all_distances.numpy()
示例8: BuildKNNGraphByFAISS_GPU
# 需要导入模块: import faiss [as 别名]
# 或者: from faiss import GpuIndexFlatConfig [as 别名]
def BuildKNNGraphByFAISS_GPU(db,k):
dbsize, dim = db.shape
flat_config = faiss.GpuIndexFlatConfig()
flat_config.device = 0
res = faiss.StandardGpuResources()
nn = faiss.GpuIndexFlatL2(res, dim, flat_config)
nn.add(db)
dists,idx = nn.search(db, k+1)
return idx[:,1:],dists[:,1:]
示例9: _retrieve_knn_faiss_gpu_inner_product
# 需要导入模块: import faiss [as 别名]
# 或者: from faiss import GpuIndexFlatConfig [as 别名]
def _retrieve_knn_faiss_gpu_inner_product(query_embeddings, db_embeddings, k, gpu_id=0):
"""
Retrieve k nearest neighbor based on inner product
Args:
query_embeddings: numpy array of size [NUM_QUERY_IMAGES x EMBED_SIZE]
db_embeddings: numpy array of size [NUM_DB_IMAGES x EMBED_SIZE]
k: number of nn results to retrieve excluding query
gpu_id: gpu device id to use for nearest neighbor (if possible for `metric` chosen)
Returns:
dists: numpy array of size [NUM_QUERY_IMAGES x k], distances of k nearest neighbors
for each query
retrieved_db_indices: numpy array of size [NUM_QUERY_IMAGES x k], indices of k nearest neighbors
for each query
"""
import faiss
res = faiss.StandardGpuResources()
flat_config = faiss.GpuIndexFlatConfig()
flat_config.device = gpu_id
# Evaluate with inner product
index = faiss.GpuIndexFlatIP(res, db_embeddings.shape[1], flat_config)
index.add(db_embeddings)
# retrieved k+1 results in case that query images are also in the db
dists, retrieved_result_indices = index.search(query_embeddings, k + 1)
return dists, retrieved_result_indices
示例10: _retrieve_knn_faiss_gpu_euclidean
# 需要导入模块: import faiss [as 别名]
# 或者: from faiss import GpuIndexFlatConfig [as 别名]
def _retrieve_knn_faiss_gpu_euclidean(query_embeddings, db_embeddings, k, gpu_id=0):
"""
Retrieve k nearest neighbor based on inner product
Args:
query_embeddings: numpy array of size [NUM_QUERY_IMAGES x EMBED_SIZE]
db_embeddings: numpy array of size [NUM_DB_IMAGES x EMBED_SIZE]
k: number of nn results to retrieve excluding query
gpu_id: gpu device id to use for nearest neighbor (if possible for `metric` chosen)
Returns:
dists: numpy array of size [NUM_QUERY_IMAGES x k], distances of k nearest neighbors
for each query
retrieved_db_indices: numpy array of size [NUM_QUERY_IMAGES x k], indices of k nearest neighbors
for each query
"""
import faiss
res = faiss.StandardGpuResources()
flat_config = faiss.GpuIndexFlatConfig()
flat_config.device = gpu_id
# Evaluate with inner product
index = faiss.GpuIndexFlatL2(res, db_embeddings.shape[1], flat_config)
index.add(db_embeddings)
# retrieved k+1 results in case that query images are also in the db
dists, retrieved_result_indices = index.search(query_embeddings, k + 1)
return dists, retrieved_result_indices
示例11: train_kmeans
# 需要导入模块: import faiss [as 别名]
# 或者: from faiss import GpuIndexFlatConfig [as 别名]
def train_kmeans(x, num_clusters=1000, gpu_ids=None, niter=100, nredo=1, verbose=0):
"""
Runs k-means clustering on one or several GPUs
"""
assert np.all(~np.isnan(x)), 'x contains NaN'
assert np.all(np.isfinite(x)), 'x contains Inf'
if isinstance(gpu_ids, int):
gpu_ids = [gpu_ids]
assert gpu_ids is None or len(gpu_ids)
d = x.shape[1]
kmeans = faiss.Clustering(d, num_clusters)
kmeans.verbose = bool(verbose)
kmeans.niter = niter
kmeans.nredo = nredo
# otherwise the kmeans implementation sub-samples the training set
kmeans.max_points_per_centroid = 10000000
if gpu_ids is not None:
res = [faiss.StandardGpuResources() for i in gpu_ids]
flat_config = []
for i in gpu_ids:
cfg = faiss.GpuIndexFlatConfig()
cfg.useFloat16 = False
cfg.device = i
flat_config.append(cfg)
if len(gpu_ids) == 1:
index = faiss.GpuIndexFlatL2(res[0], d, flat_config[0])
else:
indexes = [faiss.GpuIndexFlatL2(res[i], d, flat_config[i])
for i in range(len(gpu_ids))]
index = faiss.IndexProxy()
for sub_index in indexes:
index.addIndex(sub_index)
else:
index = faiss.IndexFlatL2(d)
# perform the training
kmeans.train(x, index)
centroids = faiss.vector_float_to_array(kmeans.centroids)
objective = faiss.vector_float_to_array(kmeans.obj)
#logging.debug("Final objective: %.4g" % objective[-1])
return centroids.reshape(num_clusters, d)
示例12: find_nearest_neighbors
# 需要导入模块: import faiss [as 别名]
# 或者: from faiss import GpuIndexFlatConfig [as 别名]
def find_nearest_neighbors(x, queries=None, k=5, gpu_id=None):
"""
Find k nearest neighbors for each of the n examples.
Distances are computed using Squared Euclidean distance metric.
Arguments:
----------
queries
x (ndarray): N examples to search within. [N x d].
gpu_id (int): use CPU if None else use GPU with the specified id.
queries (ndarray): find nearest neigbor for each query example. [M x d] matrix
If None than find k nearest neighbors for each row of x
(excluding self exampels).
k (int): number of nearest neighbors to find.
Return
I (ndarray): Indices of the nearest neighnpors. [M x k]
distances (ndarray): Distances to the nearest neighbors. [M x k]
"""
if gpu_id is not None and not isinstance(gpu_id, int):
raise ValueError('gpu_id must be None or int')
x = np.asarray(x.reshape(x.shape[0], -1), dtype=np.float32)
remove_self = False # will we have queries in the search results?
if queries is None:
remove_self = True
queries = x
k += 1
d = x.shape[1]
tic = time.time()
if gpu_id is None:
logging.debug('FAISS: cpu::find {} nearest neighbors'\
.format(k - int(remove_self)))
index = faiss.IndexFlatL2(d)
else:
logging.debug('FAISS: gpu[{}]::find {} nearest neighbors'\
.format(gpu_id, k - int(remove_self)))
cfg = faiss.GpuIndexFlatConfig()
cfg.useFloat16 = False
cfg.device = gpu_id
flat_config = [cfg]
resources = [faiss.StandardGpuResources()]
index = faiss.GpuIndexFlatL2(resources[0], d, flat_config[0])
index.add(x)
distances, nns = index.search(queries, k)
if remove_self:
for i in range(len(nns)):
indices = np.nonzero(nns[i, :] != i)[0]
indices.sort()
if len(indices) > k - 1:
indices = indices[:-1]
nns[i, :-1] = nns[i, indices]
distances[i, :-1] = distances[i, indices]
nns = nns[:, :-1]
distances = distances[:, :-1]
logging.debug('FAISS: Neighbors search total elapsed time: {:.2f} sec'.format(time.time() - tic))
return nns, distances
示例13: get_nn_avg_dist_mog
# 需要导入模块: import faiss [as 别名]
# 或者: from faiss import GpuIndexFlatConfig [as 别名]
def get_nn_avg_dist_mog(emb, query, knn):
"""
Compute the average distance of the `knn` nearest neighbors
for a given set of embeddings and queries.
Use Faiss if available.
emb has divided sqrt(2) * var
"""
if FAISS_AVAILABLE:
emb = emb.cpu().numpy()
query = query.cpu().numpy()
if hasattr(faiss, 'StandardGpuResources'):
# gpu mode
res = faiss.StandardGpuResources()
config = faiss.GpuIndexFlatConfig()
config.device = 0
index = faiss.GpuIndexFlatL2(res, emb.shape[1], config)
else:
# cpu mode
index = faiss.IndexFlatL2(emb.shape[1])
index.add(emb)
# Ad-hoc implementation
topK = 1000
temp = 2.
topK = 10
distances, idxes = index.search(query, topK)
return distances.mean(1)
#query_idx = np.tile(np.arange(query.shape[0]) + 1, (topK, 1)).transpose()
#rank_diff = abs(np.log(idxes + 1) - np.log(query_idx)) / temp
#mog_distances_sorted = np.sort(distances + rank_diff)[:, :knn]
# return: qN, knn
#return mog_distances_sorted.mean(1)
else:
bs = 1024
all_distances = []
emb = emb.transpose(0, 1).contiguous()
for i in range(0, query.shape[0], bs):
distances = query[i:i + bs].mm(emb)
best_distances, _ = distances.topk(knn, dim=1, largest=True, sorted=True)
all_distances.append(best_distances.mean(1).cpu())
all_distances = torch.cat(all_distances)
return all_distances.numpy()