本文整理汇总了Python中fairseq.utils.resolve_max_positions方法的典型用法代码示例。如果您正苦于以下问题:Python utils.resolve_max_positions方法的具体用法?Python utils.resolve_max_positions怎么用?Python utils.resolve_max_positions使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类fairseq.utils
的用法示例。
在下文中一共展示了utils.resolve_max_positions方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: get_valid_iterator
# 需要导入模块: from fairseq import utils [as 别名]
# 或者: from fairseq.utils import resolve_max_positions [as 别名]
def get_valid_iterator(
self,
subset,
):
"""Return an EpochBatchIterator over given validation subset for a given epoch."""
return self.task.get_batch_iterator(
dataset=self.task.dataset(subset),
max_tokens=self.args.max_tokens_valid,
max_sentences=self.args.max_sentences_valid,
max_positions=utils.resolve_max_positions(
self.task.max_positions(),
self.model.max_positions(),
),
ignore_invalid_inputs=self.args.skip_invalid_size_inputs_valid_test,
required_batch_size_multiple=self.args.required_batch_size_multiple,
seed=self.args.seed,
num_shards=self.data_parallel_world_size,
shard_id=self.data_parallel_rank,
num_workers=self.args.num_workers
)
示例2: make_batches
# 需要导入模块: from fairseq import utils [as 别名]
# 或者: from fairseq.utils import resolve_max_positions [as 别名]
def make_batches(self, lines):
token_lst = [self.task.source_dictionary.encode_line(line, add_if_not_exist=False).long()
for line in lines]
length_lst = torch.LongTensor([tokens.numel() for tokens in token_lst])
ds = data.TokenBlockDataset(token_lst, length_lst, self.args.tokens_per_sample, pad=self.task.dictionary.pad(),
eos=self.task.dictionary.eos(),
break_mode='eos', include_targets=True)
add_eos_for_other_targets = self.args.sample_break_mode is not None and self.args.sample_break_mode != 'none'
itr = self.task.get_batch_iterator(
dataset=data.MonolingualDataset(ds, ds.sizes, self.task.dictionary, self.task.target_dictionary,
add_eos_for_other_targets, shuffle=False, targets=self.task.targets),
max_tokens=self.args.max_tokens or 3000,
max_sentences=self.args.max_sentences,
max_positions=utils.resolve_max_positions(*[
model.max_positions() for model in self.models
]),
num_shards=self.args.num_shards,
shard_id=self.args.shard_id,
ignore_invalid_inputs=True,
num_workers=self.args.num_workers,
).next_epoch_itr(shuffle=False)
return itr
示例3: get_dummy_batch
# 需要导入模块: from fairseq import utils [as 别名]
# 或者: from fairseq.utils import resolve_max_positions [as 别名]
def get_dummy_batch(self, num_tokens, max_positions, src_len=128, tgt_len=128):
"""Return a dummy batch with a given number of tokens."""
src_len, tgt_len = utils.resolve_max_positions(
(src_len, tgt_len),
max_positions,
(self.max_source_positions, self.max_target_positions),
)
bsz = max(num_tokens // max(src_len, tgt_len), 1)
return self.collater([
{
'id': i,
'source': self.src_dict.dummy_sentence(src_len),
'target': self.tgt_dict.dummy_sentence(tgt_len) if self.tgt_dict is not None else None,
}
for i in range(bsz)
])
示例4: get_dummy_batch
# 需要导入模块: from fairseq import utils [as 别名]
# 或者: from fairseq.utils import resolve_max_positions [as 别名]
def get_dummy_batch(self, num_tokens, max_positions, src_len=128, tgt_len=128):
"""Return a dummy batch with a given number of tokens."""
src_len, tgt_len = utils.resolve_max_positions(
(src_len, tgt_len),
max_positions,
(self.max_source_positions, self.max_target_positions),
)
bsz = max(num_tokens // max(src_len, tgt_len), 1)
src_dummy = self.src_dict.dummy_sentence(src_len)
tgt_dummy = self.tgt_dict.dummy_sentence(tgt_len)
return self.collater([
{
'id': i,
'source': {
"tokens": src_dummy,
"labels": torch.zeros_like(src_dummy),
},
'target': {
"tokens": tgt_dummy,
"labels": torch.zeros_like(tgt_dummy),
} if self.tgt_dict is not None else None,
}
for i in range(bsz)
])
示例5: test_resolve_max_positions_with_tuple
# 需要导入模块: from fairseq import utils [as 别名]
# 或者: from fairseq.utils import resolve_max_positions [as 别名]
def test_resolve_max_positions_with_tuple(self):
resolved = utils.resolve_max_positions(None, (2000, 100, 2000), 12000)
self.assertEqual(resolved, (2000, 100, 2000))
示例6: get_train_iterator
# 需要导入模块: from fairseq import utils [as 别名]
# 或者: from fairseq.utils import resolve_max_positions [as 别名]
def get_train_iterator(
self,
epoch,
combine=True,
load_dataset=True,
data_selector=None,
shard_batch_itr=True,
):
"""Return an EpochBatchIterator over the training set for a given epoch."""
if load_dataset:
logger.info("loading train data for epoch {}".format(epoch))
self.task.load_dataset(
self.args.train_subset,
epoch=epoch,
combine=combine,
data_selector=data_selector,
)
return self.task.get_batch_iterator(
dataset=self.task.dataset(self.args.train_subset),
max_tokens=self.args.max_tokens,
max_sentences=self.args.max_sentences,
max_positions=utils.resolve_max_positions(
self.task.max_positions(),
self.model.max_positions(),
self.args.max_tokens,
),
ignore_invalid_inputs=True,
required_batch_size_multiple=self.args.required_batch_size_multiple,
seed=self.args.seed,
num_shards=self.data_parallel_world_size if shard_batch_itr else 1,
shard_id=self.data_parallel_rank if shard_batch_itr else 0,
num_workers=self.args.num_workers,
epoch=epoch
)
示例7: __init__
# 需要导入模块: from fairseq import utils [as 别名]
# 或者: from fairseq.utils import resolve_max_positions [as 别名]
def __init__(self, args, task, model):
super().__init__()
self.args = args
self.task = task
self.model = model
self.bpe = encoders.build_bpe(args)
self.max_positions = min(utils.resolve_max_positions(
self.task.max_positions(),
self.model.max_positions(),
))
# this is useful for determining the device
self.register_buffer('_float_tensor', torch.tensor([0], dtype=torch.float))
示例8: __init__
# 需要导入模块: from fairseq import utils [as 别名]
# 或者: from fairseq.utils import resolve_max_positions [as 别名]
def __init__(self, args, task, models):
super().__init__()
self.args = args
self.task = task
self.models = nn.ModuleList(models)
self.src_dict = task.source_dictionary
self.tgt_dict = task.target_dictionary
# optimize model for generation
for model in self.models:
model.make_generation_fast_(
beamable_mm_beam_size=(
None if getattr(args, 'no_beamable_mm', False)
else getattr(args, 'beam', 5)
),
need_attn=getattr(args, 'print_alignment', False),
)
# Load alignment dictionary for unknown word replacement
# (None if no unknown word replacement, empty if no path to align dictionary)
self.align_dict = utils.load_align_dict(getattr(args, 'replace_unk', None))
self.tokenizer = encoders.build_tokenizer(args)
self.bpe = encoders.build_bpe(args)
self.max_positions = utils.resolve_max_positions(
self.task.max_positions(), *[model.max_positions() for model in models]
)
# this is useful for determining the device
self.register_buffer('_float_tensor', torch.tensor([0], dtype=torch.float))
示例9: build_trainer
# 需要导入模块: from fairseq import utils [as 别名]
# 或者: from fairseq.utils import resolve_max_positions [as 别名]
def build_trainer(args, task, model, criterion, trainer_class):
""" Build trainer with provided trainer_class, and set up training state.
"""
# Build trainer
trainer = trainer_class(args, task, model, criterion)
print(
f"| training on {args.distributed_world_size} total GPUs "
f"({torch.cuda.device_count()} GPUs locally on this machine).\n"
f"| max tokens per GPU = {args.max_tokens} and \
max sentences per GPU = {args.max_sentences}",
flush=True,
)
epoch_itr = task.get_batch_iterator(
dataset=task.dataset(args.train_subset),
max_tokens=args.max_tokens,
max_sentences=args.max_sentences,
max_positions=utils.resolve_max_positions(
task.max_positions(), model.max_positions()
),
ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
required_batch_size_multiple=8,
seed=args.seed,
num_shards=args.distributed_world_size,
shard_id=args.distributed_rank,
num_workers=args.num_workers,
)
return trainer, epoch_itr
示例10: get_dummy_batch
# 需要导入模块: from fairseq import utils [as 别名]
# 或者: from fairseq.utils import resolve_max_positions [as 别名]
def get_dummy_batch(self, num_tokens, max_positions, src_len=128, tgt_len=128):
"""Return a dummy batch with a given number of tokens."""
src_len, tgt_len = utils.resolve_max_positions(
(src_len, tgt_len),
max_positions,
(self.max_source_positions, self.max_target_positions),
)
return generate_dummy_batch(num_tokens, self.collater, self.src_vocab, self.tgt_vocab, src_len, tgt_len)
示例11: score_sentence
# 需要导入模块: from fairseq import utils [as 别名]
# 或者: from fairseq.utils import resolve_max_positions [as 别名]
def score_sentence(self, line):
# Tokenize the input sentence into a batch of size one.
tokens = tokenizer.Tokenizer.tokenize(line, self.task.dictionary, add_if_not_exist=False).long()
lengths = np.array([tokens.numel()])
ds = data.TokenBlockDataset(tokens, lengths, self.args.tokens_per_sample, pad=self.task.dictionary.pad(), eos=self.task.dictionary.eos(), break_mode=self.args.sample_break_mode, include_targets=True)
# Create a batch iterator to wrap the data.
add_eos_for_other_targets = self.args.sample_break_mode is not None and self.args.sample_break_mode != 'none'
itr = self.task.get_batch_iterator(
dataset=data.MonolingualDataset(ds, ds.sizes, self.task.dictionary, self.task.target_dictionary, add_eos_for_other_targets=add_eos_for_other_targets, shuffle=False, targets=self.task.targets),
max_tokens=self.args.max_tokens or 3000,
max_sentences=self.args.max_sentences,
max_positions=utils.resolve_max_positions(*[
model.max_positions() for model in self.models
]),
num_shards=self.args.num_shards,
shard_id=self.args.shard_id,
ignore_invalid_inputs=True,
).next_epoch_itr(shuffle=False)
# Evaluate the sentence and return the fluency score.
results = self.scorer.score_batched_itr(itr, cuda=self.use_cuda)
for _, _, _, hypos in results:
for hypo in hypos:
# Ignore words with infinite probability. This can happen when
# running low-precision inference on the GPU.
pos_scores = hypo['positional_scores']
word_prob = [score for score in pos_scores if score != float('-inf') and score != float('inf')]
return self._fluency_score(word_prob)
return 0.0
示例12: validate
# 需要导入模块: from fairseq import utils [as 别名]
# 或者: from fairseq.utils import resolve_max_positions [as 别名]
def validate(args, trainer, task, epoch_itr, subsets):
"""Evaluate the model on the validation set(s) and return the losses."""
valid_losses = []
for subset in subsets:
# Initialize data iterator
itr = task.get_batch_iterator(
dataset=task.dataset(subset),
max_tokens=args.max_tokens,
max_sentences=args.max_sentences_valid,
max_positions=utils.resolve_max_positions(
task.max_positions(),
trainer.get_model().max_positions(),
),
ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
required_batch_size_multiple=8,
seed=args.seed,
num_shards=args.distributed_world_size,
shard_id=args.distributed_rank,
num_workers=args.num_workers,
).next_epoch_itr(shuffle=False)
progress = progress_bar.build_progress_bar(
args, itr, epoch_itr.epoch,
prefix='valid on \'{}\' subset'.format(subset),
no_progress_bar='simple'
)
# reset validation loss meters
for k in ['valid_loss', 'valid_nll_loss']:
meter = trainer.get_meter(k)
if meter is not None:
meter.reset()
extra_meters = collections.defaultdict(lambda: AverageMeter())
for sample in progress:
log_output = trainer.valid_step(sample)
for k, v in log_output.items():
if k in ['loss', 'nll_loss', 'ntokens', 'nsentences', 'sample_size']:
continue
extra_meters[k].update(v)
# log validation stats
stats = get_valid_stats(trainer)
for k, meter in extra_meters.items():
stats[k] = meter.avg
progress.print(stats, tag=subset, step=trainer.get_num_updates())
valid_losses.append(stats['loss'].avg)
return valid_losses