本文整理汇总了Python中fairseq.utils.load_ensemble_for_inference方法的典型用法代码示例。如果您正苦于以下问题:Python utils.load_ensemble_for_inference方法的具体用法?Python utils.load_ensemble_for_inference怎么用?Python utils.load_ensemble_for_inference使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类fairseq.utils
的用法示例。
在下文中一共展示了utils.load_ensemble_for_inference方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from fairseq import utils [as 别名]
# 或者: from fairseq.utils import load_ensemble_for_inference [as 别名]
def __init__(self, path, data, use_cpu=True):
# Create the language modeling task.
self.args = FluencyArgs(path, data)
self.task = tasks.setup_task(self.args)
self.use_cuda = torch.cuda.is_available and not use_cpu
# Load language model ensemble.
models, model_args = utils.load_ensemble_for_inference(self.args.path.split(':'), self.task)
self.models = models
self.model_args = model_args
# Optimize ensemble for generation.
for model in self.models:
model.make_generation_fast_()
if self.use_cuda and self.model_args.fp16:
model.half()
# Create the sequence scorer.
self.scorer = SequenceScorer(self.models, self.task.target_dictionary)
if self.use_cuda:
self.scorer.cuda()
示例2: setup_asr
# 需要导入模块: from fairseq import utils [as 别名]
# 或者: from fairseq.utils import load_ensemble_for_inference [as 别名]
def setup_asr(args, logger):
check_args(args)
import_user_module(args)
if args.max_tokens is None and args.max_sentences is None:
args.max_tokens = 30000
logger.info(args)
use_cuda = torch.cuda.is_available() and not args.cpu
# Load dataset splits
task = tasks.setup_task(args)
# Set dictionary
tgt_dict = task.target_dictionary
if args.ctc or args.rnnt:
tgt_dict.add_symbol("<ctc_blank>")
if args.ctc:
logger.info("| decoding a ctc model")
if args.rnnt:
logger.info("| decoding a rnnt model")
# Load ensemble
logger.info("| loading model(s) from {}".format(args.path))
models, _model_args = load_ensemble_for_inference(
args.path.split(":"),
task,
model_arg_overrides=eval(args.model_overrides), # noqa
)
optimize_models(args, use_cuda, models)
# Initialize generator
generator = task.build_generator(args)
sp = spm.SentencePieceProcessor()
sp.Load(os.path.join(args.data, "spm.model"))
return task, generator, models, sp, tgt_dict
示例3: __init__
# 需要导入模块: from fairseq import utils [as 别名]
# 或者: from fairseq.utils import load_ensemble_for_inference [as 别名]
def __init__(self, parsed_args):
self.args = parsed_args
import_user_module(parsed_args)
assert parsed_args.path is not None, '--path required for evaluation'
print(parsed_args)
self.use_cuda = torch.cuda.is_available() and not parsed_args.cpu
self.task = tasks.setup_task(parsed_args)
# Load ensemble
print('| loading model(s) from {}'.format(parsed_args.path))
self.models, args = utils.load_ensemble_for_inference(
parsed_args.path.split(':'), self.task, model_arg_overrides=eval(parsed_args.model_overrides),
)
for model in self.models:
model.make_generation_fast_()
if self.use_cuda:
model.cuda()
for arg in vars(parsed_args).keys():
if arg not in {'self_target', 'future_target', 'past_target', 'tokens_per_sample',
'output_size_dictionary'}:
setattr(args, arg, getattr(parsed_args, arg))
self.task = tasks.setup_task(args)
self.gen_timer = StopwatchMeter()
self.scorer = SequenceScorer(self.task.target_dictionary)
示例4: main
# 需要导入模块: from fairseq import utils [as 别名]
# 或者: from fairseq.utils import load_ensemble_for_inference [as 别名]
def main(args):
assert args.path is not None, '--path required for evaluation!'
if args.tokens_per_sample is None:
args.tokens_per_sample = 1024
print(args)
use_cuda = torch.cuda.is_available() and not args.cpu
# Load dataset splits
task = tasks.setup_task(args)
task.load_dataset(args.gen_subset)
print('| {} {} {} examples'.format(args.data, args.gen_subset, len(task.dataset(args.gen_subset))))
# Load ensemble
print('| loading model(s) from {}'.format(args.path))
models, _ = utils.load_ensemble_for_inference(args.path.split(':'), task)
# Optimize ensemble for generation and set the source and dest dicts on the model (required by scorer)
for model in models:
model.make_generation_fast_()
itr = data.EpochBatchIterator(
dataset=task.dataset(args.gen_subset),
max_sentences=args.max_sentences or 4,
max_positions=model.max_positions(),
num_shards=args.num_shards,
shard_id=args.shard_id,
).next_epoch_itr(shuffle=False)
gen_timer = StopwatchMeter()
scorer = SequenceScorer(models, task.target_dictionary)
if use_cuda:
scorer.cuda()
score_sum = 0.
count = 0
with progress_bar.build_progress_bar(args, itr) as t:
results = scorer.score_batched_itr(t, cuda=use_cuda, timer=gen_timer)
wps_meter = TimeMeter()
for _, src_tokens, __, hypos in results:
for hypo in hypos:
pos_scores = hypo['positional_scores']
inf_scores = pos_scores.eq(float('inf')) | pos_scores.eq(float('-inf'))
if inf_scores.any():
print('| Skipping tokens with inf scores:',
task.target_dictionary.string(hypo['tokens'][inf_scores.nonzero()]))
pos_scores = pos_scores[(~inf_scores).nonzero()]
score_sum += pos_scores.sum()
count += pos_scores.numel()
wps_meter.update(src_tokens.size(0))
t.log({'wps': round(wps_meter.avg)})
avg_nll_loss = -score_sum / count
print('| Evaluated {} tokens in {:.1f}s ({:.2f} tokens/s)'.format(gen_timer.n, gen_timer.sum, 1. / gen_timer.avg))
print('| Loss: {:.4f}, Perplexity: {:.2f}'.format(avg_nll_loss, np.exp(avg_nll_loss)))
示例5: build_model
# 需要导入模块: from fairseq import utils [as 别名]
# 或者: from fairseq.utils import load_ensemble_for_inference [as 别名]
def build_model(cls, args, task):
trained_encoder, trained_decoder = None, None
pretrained = eval(args.pretrained)
if pretrained:
print("| Loading pretrained model")
trained_model = utils.load_ensemble_for_inference(
# not actually for inference, but loads pretrained model parameters
filenames=[args.pretrained_checkpoint],
task=task,
)[0][0]
trained_decoder = list(trained_model.children())[1]
trained_encoder = list(trained_model.children())[0]
# freeze pretrained model
for param in trained_decoder.parameters():
param.requires_grad = False
for param in trained_encoder.parameters():
param.requires_grad = False
"""Build a new model instance."""
encoder = FConvEncoder(
task.source_dictionary,
embed_dim=args.encoder_embed_dim,
convolutions=eval(args.encoder_layers),
dropout=args.dropout,
max_positions=args.max_source_positions,
attention=eval(args.encoder_attention),
attention_nheads=args.encoder_attention_nheads
)
decoder = FConvDecoder(
task.target_dictionary,
embed_dim=args.decoder_embed_dim,
convolutions=eval(args.decoder_layers),
out_embed_dim=args.decoder_out_embed_dim,
attention=eval(args.decoder_attention),
dropout=args.dropout,
max_positions=args.max_target_positions,
selfattention=eval(args.self_attention),
attention_nheads=args.multihead_attention_nheads,
selfattention_nheads=args.multihead_self_attention_nheads,
project_input=eval(args.project_input),
gated_attention=eval(args.gated_attention),
downsample=eval(args.downsample),
pretrained=pretrained,
trained_decoder=trained_decoder
)
model = FConvModelSelfAtt(encoder, decoder, trained_encoder)
return model
示例6: build_model
# 需要导入模块: from fairseq import utils [as 别名]
# 或者: from fairseq.utils import load_ensemble_for_inference [as 别名]
def build_model(cls, args, task):
trained_encoder, trained_decoder = None, None
pretrained = eval(args.pretrained)
if pretrained:
print("| loading pretrained model")
trained_model = utils.load_ensemble_for_inference(
# not actually for inference, but loads pretrained model parameters
filenames=[args.pretrained_checkpoint],
task=task,
)[0][0]
trained_decoder = list(trained_model.children())[1]
trained_encoder = list(trained_model.children())[0]
# freeze pretrained model
for param in trained_decoder.parameters():
param.requires_grad = False
for param in trained_encoder.parameters():
param.requires_grad = False
"""Build a new model instance."""
encoder = FConvEncoder(
task.source_dictionary,
embed_dim=args.encoder_embed_dim,
convolutions=eval(args.encoder_layers),
dropout=args.dropout,
max_positions=args.max_source_positions,
attention=eval(args.encoder_attention),
attention_nheads=args.encoder_attention_nheads
)
decoder = FConvDecoder(
task.target_dictionary,
embed_dim=args.decoder_embed_dim,
convolutions=eval(args.decoder_layers),
out_embed_dim=args.decoder_out_embed_dim,
attention=eval(args.decoder_attention),
dropout=args.dropout,
max_positions=args.max_target_positions,
selfattention=eval(args.self_attention),
attention_nheads=args.multihead_attention_nheads,
selfattention_nheads=args.multihead_self_attention_nheads,
project_input=eval(args.project_input),
gated_attention=eval(args.gated_attention),
downsample=eval(args.downsample),
pretrained=pretrained,
trained_decoder=trained_decoder
)
model = FConvModelSelfAtt(encoder, decoder, trained_encoder)
return model
示例7: main
# 需要导入模块: from fairseq import utils [as 别名]
# 或者: from fairseq.utils import load_ensemble_for_inference [as 别名]
def main(args):
print(args)
use_cuda = torch.cuda.is_available() and not args.cpu
# Load ensemble
print('| loading model(s) from {}'.format(', '.join(args.path)))
models, model_args = utils.load_ensemble_for_inference(args.path, data_dir=args.data)
src_dict, dst_dict = models[0].src_dict, models[0].dst_dict
print('| [{}] dictionary: {} types'.format(model_args.source_lang, len(src_dict)))
print('| [{}] dictionary: {} types'.format(model_args.target_lang, len(dst_dict)))
# Optimize ensemble for generation
for model in models:
model.make_generation_fast_(
beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
)
# Initialize generator
translator = SequenceGenerator(
models, beam_size=args.beam, stop_early=(not args.no_early_stop),
normalize_scores=(not args.unnormalized), len_penalty=args.lenpen,
unk_penalty=args.unkpen)
if use_cuda:
translator.cuda()
# Load alignment dictionary for unknown word replacement
# (None if no unknown word replacement, empty if no path to align dictionary)
align_dict = utils.load_align_dict(args.replace_unk)
print('| Type the input sentence and press return:')
for src_str in sys.stdin:
src_str = src_str.strip()
src_tokens = tokenizer.Tokenizer.tokenize(src_str, src_dict, add_if_not_exist=False).long()
if use_cuda:
src_tokens = src_tokens.cuda()
src_lengths = src_tokens.new([src_tokens.numel()])
translations = translator.generate(
Variable(src_tokens.view(1, -1)),
Variable(src_lengths.view(-1)),
)
hypos = translations[0]
print('O\t{}'.format(src_str))
# Process top predictions
for hypo in hypos[:min(len(hypos), args.nbest)]:
hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
hypo_tokens=hypo['tokens'].int().cpu(),
src_str=src_str,
alignment=hypo['alignment'].int().cpu(),
align_dict=align_dict,
dst_dict=dst_dict,
remove_bpe=args.remove_bpe,
)
print('H\t{}\t{}'.format(hypo['score'], hypo_str))
print('A\t{}'.format(' '.join(map(str, alignment))))