本文整理汇总了Python中fairseq.utils.fill_with_neg_inf方法的典型用法代码示例。如果您正苦于以下问题:Python utils.fill_with_neg_inf方法的具体用法?Python utils.fill_with_neg_inf怎么用?Python utils.fill_with_neg_inf使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类fairseq.utils
的用法示例。
在下文中一共展示了utils.fill_with_neg_inf方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: buffered_future_mask
# 需要导入模块: from fairseq import utils [as 别名]
# 或者: from fairseq.utils import fill_with_neg_inf [as 别名]
def buffered_future_mask(self, tensor):
"""attend all surounding words except itself
[[0, -inf, 0]
[0, 0, -inf]
[0, 0, 0]]
The attention map is not ture diagonal since we predict y_{t+1} at time-step t
"""
dim = tensor.size(0)
if (
not hasattr(self, "_future_mask")
or self._future_mask is None
or self._future_mask.device != tensor.device
):
self._future_mask = torch.triu(
utils.fill_with_neg_inf(tensor.new(dim, dim)), 1
)
self._future_mask = torch.tril(self._future_mask, 1)
if self._future_mask.size(0) < dim:
self._future_mask = torch.triu(
utils.fill_with_neg_inf(self._future_mask.resize_(dim, dim)), 1
)
self._future_mask = torch.tril(self._future_mask, 1)
return self._future_mask[:dim, :dim]
示例2: get_attention_mask
# 需要导入模块: from fairseq import utils [as 别名]
# 或者: from fairseq.utils import fill_with_neg_inf [as 别名]
def get_attention_mask(self, x, src_len, waitk=None):
if waitk is None:
if self.multi_waitk:
assert self.min_waitk <= self.max_waitk
waitk = random.randint(min(self.min_waitk, src_len),
min(src_len, self.max_waitk))
else:
waitk = self.waitk
if waitk < src_len:
encoder_attn_mask = torch.triu(
utils.fill_with_neg_inf(
x.new(x.size(0), src_len)
), waitk
)
if waitk <= 0:
encoder_attn_mask[:, 0] = 0
else:
encoder_attn_mask = None
return encoder_attn_mask
示例3: get_transitions
# 需要导入模块: from fairseq import utils [as 别名]
# 或者: from fairseq.utils import fill_with_neg_inf [as 别名]
def get_transitions(self, controls):
"""
Inputs:
controls: log(rho) & log(1-rho) read/write probabilities: (Tt, B, Ts, 2)
Returns the log-transition matrix (Tt, B, Ts, Ts)
k->j : p(z_t+1 = j | z_t = k) = (1-rho_tj) prod_l rho_tl
"""
Tt, N, Ts, _ = controls.size()
# force rho_tTx = 0
controls[:, :, -1, 0] = - float('inf')
controls[:, :, -1, 1] = 0
M = utils.fill_with_neg_inf(controls.new_empty((Tt, N, Ts, Ts)))
for k in range(Ts):
for j in range(k, Ts):
M[:, :, k, j] = controls[:, :, j, 1] + torch.sum(controls[:, :, k:j, 0], dim=-1)
print('Controls p(read)', torch.exp(controls[:,:,:,0]).round().data)
print('M(t=0)', torch.exp(M[0,0]).round().data)
print('M(t=2)', torch.exp(M[2,0]).round().data)
return M
示例4: _forward_alpha
# 需要导入模块: from fairseq import utils [as 别名]
# 或者: from fairseq.utils import fill_with_neg_inf [as 别名]
def _forward_alpha(self, emissions, M):
Tt, B, Ts = emissions.size()
alpha = utils.fill_with_neg_inf(torch.empty_like(emissions)) # Tt, B, Ts
# initialization t=1
initial = torch.empty_like(alpha[0]).fill_(-math.log(Ts)) # log(1/Ts)
# initial = utils.fill_with_neg_inf(torch.empty_like(alpha[0]))
# initial[:, 0] = 0
alpha[0] = emissions[0] + initial
# print('Initialize alpha:', alpha[0])
# induction
for i in range(1, Tt):
alpha[i] = torch.logsumexp(alpha[i-1].unsqueeze(-1) + M[i-1], dim=1)
alpha[i] = alpha[i] + emissions[i]
# print('Emissions@', i, emissions[i])
# print('alpha@',i, alpha[i])
return alpha
示例5: get_transitions
# 需要导入模块: from fairseq import utils [as 别名]
# 或者: from fairseq.utils import fill_with_neg_inf [as 别名]
def get_transitions(self, controls):
"""
Inputs:
controls: log(rho) & log(1-rho) read/write probabilities: (Tt, B, Ts, 2)
Returns the log-transition matrix (Tt, B, Ts, Ts)
k->j : p(z_t+1 = j | z_t = k) = (1-rho_tj) prod_l rho_tl
"""
Tt, N, Ts, _ = controls.size()
# force rho_tTx = 0
controls[:, :, -1, 0] = - float('inf')
controls[:, :, -1, 1] = 0
M = utils.fill_with_neg_inf(controls.new_empty((Tt, N, Ts, Ts)))
for k in range(Ts):
for j in range(k, Ts):
M[:, :, k, j] = controls[:, :, j, 1] + torch.sum(controls[:, :, k:j, 0], dim=-1)
return M
示例6: get_transitions
# 需要导入模块: from fairseq import utils [as 别名]
# 或者: from fairseq.utils import fill_with_neg_inf [as 别名]
def get_transitions(self, controls):
"""
Inputs:
controls: log(rho) & log(1-rho) read/write probabilities: (Tt, N, Ts, 2)
Returns the log-transition matrix (N, Tt, Ts, Ts)
k->j : p(z_t+1 = j | z_t = k) = (1-rho_tj) prod_l rho_tl
"""
Tt, N, Ts, _ = controls.size()
# force rho_tTx = 0
controls[:, :, -1, 0] = - float('inf')
controls[:, :, -1, 1] = 0
M = utils.fill_with_neg_inf(controls.new_empty((Tt, N, Ts, Ts)))
for k in range(Ts):
for j in range(k, Ts):
M[:, :, k, j] = controls[:, :, j, 1] + torch.sum(controls[:, :, k:j, 0], dim=-1)
return M
示例7: fill_controls_emissions_grid
# 需要导入模块: from fairseq import utils [as 别名]
# 或者: from fairseq.utils import fill_with_neg_inf [as 别名]
def fill_controls_emissions_grid(self, controls, emissions, indices, src_length):
"""
Return controls (C) and emissions (E) covering all the grid
C : Tt, N, Ts, 2
E : Tt, N, Ts
"""
N = controls[0].size(0)
tgt_length = len(controls)
Cread = controls[0].new_zeros((tgt_length, src_length, N, 1))
Cwrite = utils.fill_with_neg_inf(torch.empty_like(Cread))
triu_mask = torch.triu(controls[0].new_ones(tgt_length, src_length), 1).byte()
triu_mask = triu_mask.unsqueeze(-1).unsqueeze(-1).expand(-1, -1, N, 1)
Cwrite.masked_fill_(triu_mask, 0)
C = torch.cat((Cread, Cwrite), dim=-1)
E = utils.fill_with_neg_inf(emissions[0].new(tgt_length, src_length, N))
for t, (subC, subE) in enumerate(zip(controls, emissions)):
select = [indices[t]]
C[t].index_put_(select, subC.transpose(0, 1))
E[t].index_put_(select, subE.transpose(0, 1))
return C.transpose(1, 2), E.transpose(1, 2)
示例8: _forward_alpha
# 需要导入模块: from fairseq import utils [as 别名]
# 或者: from fairseq.utils import fill_with_neg_inf [as 别名]
def _forward_alpha(self, emissions, M):
Tt, B, Ts = emissions.size()
alpha = utils.fill_with_neg_inf(torch.empty_like(emissions)) # Tt, B, Ts
# initialization t=1
# initial = torch.empty_like(alpha[0]).fill_(-math.log(Ts)) # log(1/Ts)
initial = utils.fill_with_neg_inf(torch.empty_like(alpha[0]))
initial[:, 0] = 0
alpha[0] = emissions[0] + initial
# print('Initialize alpha:', alpha[0])
# induction
for i in range(1, Tt):
alpha[i] = torch.logsumexp(alpha[i-1].unsqueeze(-1) + M[i-1], dim=1)
alpha[i] = alpha[i] + emissions[i]
# print('Emissions@', i, emissions[i])
# print('alpha@',i, alpha[i])
return alpha
示例9: fill_controls_emissions_grid
# 需要导入模块: from fairseq import utils [as 别名]
# 或者: from fairseq.utils import fill_with_neg_inf [as 别名]
def fill_controls_emissions_grid(self, controls, emissions, indices, src_length):
"""
Return controls (C) and emissions (E) covering all the grid
C : Tt, N, Ts, 2
E : Tt, N, Ts
"""
N = controls[0].size(0)
tgt_length = len(controls)
gamma = controls[0].new_zeros((tgt_length, src_length, N))
Cread = controls[0].new_zeros((tgt_length, src_length, N, 1))
Cwrite = utils.fill_with_neg_inf(torch.empty_like(Cread))
triu_mask = torch.triu(controls[0].new_ones(tgt_length, src_length), 1).byte()
triu_mask = triu_mask.unsqueeze(-1).unsqueeze(-1).expand(-1, -1, N, 1)
Cwrite.masked_fill_(triu_mask, 0)
C = torch.cat((Cread, Cwrite), dim=-1)
E = utils.fill_with_neg_inf(emissions[0].new(tgt_length, src_length, N))
for t, (subC, subE) in enumerate(zip(controls, emissions)):
select = [indices[t].to(C.device)]
C[t].index_put_(select, subC.transpose(0, 1))
E[t].index_put_(select, subE.transpose(0, 1))
gamma[t].index_fill_(0, select[0], 1)
# Normalize gamma:
gamma = gamma / gamma.sum(dim=1, keepdim=True)
return C.transpose(1, 2), E.transpose(1, 2), gamma.transpose(1, 2)
示例10: forward
# 需要导入模块: from fairseq import utils [as 别名]
# 或者: from fairseq.utils import fill_with_neg_inf [as 别名]
def forward(self, x, need_attention_weights=False):
x = F.glu(self.linear(x), dim=-1) # B, Tt, Ts, C
if not need_attention_weights:
# Maxpool
B, Tt, Ts, C = x.size()
mask = torch.triu(utils.fill_with_neg_inf(x.new(Tt, Ts)), self.waitk)
x, _ = (
x + mask.unsqueeze(0).unsqueeze(-1)
).max(dim=2) # B, Tt, C
return x, None
# Output attention weights:
if need_attention_weights:
# x in B, Tt, Ts, C
B, Tt, Ts, C = x.size()
x, indices = x.max(dim=2)
# indices in B, Tt, C with each channel selecting a source position
# Terrible but will do:
attn = x.new_zeros(B, Tt, Ts)
for i in range(Ts):
attn[:,:,i] = indices.eq(i).sum(dim=-1)
# Normalize
attn = attn / attn.sum(dim=-1, keepdim=True)
return x, attn
示例11: buffered_mask
# 需要导入模块: from fairseq import utils [as 别名]
# 或者: from fairseq.utils import fill_with_neg_inf [as 别名]
def buffered_mask(self, tensor):
dim = tensor.size(-1)
if self._mask is None:
self._mask = torch.triu(utils.fill_with_neg_inf(tensor.new(dim, dim)), 1)
if self._mask.size(0) < dim:
self._mask = torch.triu(utils.fill_with_neg_inf(self._mask.resize_(dim, dim)), 1)
return self._mask[:dim, :dim]
示例12: buffered_future_mask
# 需要导入模块: from fairseq import utils [as 别名]
# 或者: from fairseq.utils import fill_with_neg_inf [as 别名]
def buffered_future_mask(self, tensor):
dim = tensor.size(0)
if (
not hasattr(self, "_future_mask")
or self._future_mask is None
or self._future_mask.device != tensor.device
):
self._future_mask = torch.triu(
utils.fill_with_neg_inf(tensor.new(dim, dim)), 1
)
if self._future_mask.size(0) < dim:
self._future_mask = torch.triu(
utils.fill_with_neg_inf(self._future_mask.resize_(dim, dim)), 1
)
return self._future_mask[:dim, :dim]
示例13: buffered_future_mask
# 需要导入模块: from fairseq import utils [as 别名]
# 或者: from fairseq.utils import fill_with_neg_inf [as 别名]
def buffered_future_mask(self, tensor):
dim = tensor.size(0)
# self._future_mask.device != tensor.device is not working in TorchScript. This is a workaround.
if (
self._future_mask.size(0) == 0
or (not self._future_mask.device == tensor.device)
or self._future_mask.size(0) < dim
):
self._future_mask = torch.triu(
utils.fill_with_neg_inf(torch.zeros([dim, dim])), 1
)
self._future_mask = self._future_mask.to(tensor)
return self._future_mask[:dim, :dim]
示例14: buffered_future_mask
# 需要导入模块: from fairseq import utils [as 别名]
# 或者: from fairseq.utils import fill_with_neg_inf [as 别名]
def buffered_future_mask(self, tensor):
dim = tensor.size(0)
if not hasattr(self, '_future_mask') or self._future_mask is None or self._future_mask.device != tensor.device:
self._future_mask = torch.triu(utils.fill_with_neg_inf(tensor.new(dim, dim)), 1)
if self._future_mask.size(0) < dim:
self._future_mask = torch.triu(utils.fill_with_neg_inf(self._future_mask.resize_(dim, dim)), 1)
return self._future_mask[:dim, :dim]
示例15: forward
# 需要导入模块: from fairseq import utils [as 别名]
# 或者: from fairseq.utils import fill_with_neg_inf [as 别名]
def forward(self, src_tokens, src_lengths=None, mask=None, **kwargs):
"""
Args: src_tokens (batch, src_len)
src_lengths (batch)
Returns:
dict: - **encoder_out** (src_len, batch, embed_dim)
- **encoder_padding_mask** (batch, src_len)
"""
# embed tokens and positions
x = self.embed_scale * self.embed_tokens(src_tokens)
if self.embed_positions is not None:
x += self.embed_positions(src_tokens)
x = F.dropout(x, p=self.dropout, training=self.training)
# B x T x C -> T x B x C
x = x.transpose(0, 1)
# compute padding mask
encoder_padding_mask = src_tokens.eq(self.padding_idx)
if not encoder_padding_mask.any():
encoder_padding_mask = None
# encoder layers
if mask is None:
mask = torch.triu(utils.fill_with_neg_inf(x.new(x.size(0), x.size(0))), 1)
for layer in self.layers:
# Make the encoder unidirectional
x = layer(
x, encoder_padding_mask,
self_attn_mask=mask,
)
if self.normalize:
x = self.layer_norm(x)
return {
'encoder_out': x, # T x B x C
'encoder_padding_mask': encoder_padding_mask, # B x T
}