当前位置: 首页>>代码示例>>Python>>正文


Python facenet.load_data方法代码示例

本文整理汇总了Python中facenet.load_data方法的典型用法代码示例。如果您正苦于以下问题:Python facenet.load_data方法的具体用法?Python facenet.load_data怎么用?Python facenet.load_data使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在facenet的用法示例。


在下文中一共展示了facenet.load_data方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: evaluate_accuracy

# 需要导入模块: import facenet [as 别名]
# 或者: from facenet import load_data [as 别名]
def evaluate_accuracy(sess, images_placeholder, phase_train_placeholder, image_size, embeddings, 
        paths, actual_issame, augment_images, aug_value, batch_size, orig_image_size, seed):
    nrof_images = len(paths)
    nrof_batches = int(math.ceil(1.0*nrof_images / batch_size))
    emb_list = []
    for i in range(nrof_batches):
        start_index = i*batch_size
        end_index = min((i+1)*batch_size, nrof_images)
        paths_batch = paths[start_index:end_index]
        images = facenet.load_data(paths_batch, False, False, orig_image_size)
        images_aug = augment_images(images, aug_value, image_size)
        feed_dict = { images_placeholder: images_aug, phase_train_placeholder: False }
        emb_list += sess.run([embeddings], feed_dict=feed_dict)
    emb_array = np.vstack(emb_list)  # Stack the embeddings to a nrof_examples_per_epoch x 128 matrix
    
    thresholds = np.arange(0, 4, 0.01)
    embeddings1 = emb_array[0::2]
    embeddings2 = emb_array[1::2]
    _, _, accuracy = facenet.calculate_roc(thresholds, embeddings1, embeddings2, np.asarray(actual_issame), seed)
    return accuracy 
开发者ID:1024210879,项目名称:facenet-demo,代码行数:22,代码来源:test_invariance_on_lfw.py

示例2: load_testset

# 需要导入模块: import facenet [as 别名]
# 或者: from facenet import load_data [as 别名]
def load_testset(size):
    # Load images paths and labels
    pairs = lfw.read_pairs(pairs_path)
    paths, labels = lfw.get_paths(testset_path, pairs, file_extension)

    # Random choice
    permutation = np.random.choice(len(labels), size, replace=False)
    paths_batch_1 = []
    paths_batch_2 = []

    for index in permutation:
        paths_batch_1.append(paths[index * 2])
        paths_batch_2.append(paths[index * 2 + 1])

    labels = np.asarray(labels)[permutation]
    paths_batch_1 = np.asarray(paths_batch_1)
    paths_batch_2 = np.asarray(paths_batch_2)

    # Load images
    faces1 = facenet.load_data(paths_batch_1, False, False, image_size)
    faces2 = facenet.load_data(paths_batch_2, False, False, image_size)

    # Change pixel values to 0 to 1 values
    min_pixel = min(np.min(faces1), np.min(faces2))
    max_pixel = max(np.max(faces1), np.max(faces2))
    faces1 = (faces1 - min_pixel) / (max_pixel - min_pixel)
    faces2 = (faces2 - min_pixel) / (max_pixel - min_pixel)

    # Convert labels to one-hot vectors
    onehot_labels = []
    for index in range(len(labels)):
        if labels[index]:
            onehot_labels.append([1, 0])
        else:
            onehot_labels.append([0, 1])

    return faces1, faces2, np.array(onehot_labels) 
开发者ID:StephanZheng,项目名称:neural-fingerprinting,代码行数:39,代码来源:set_loader.py

示例3: main

# 需要导入模块: import facenet [as 别名]
# 或者: from facenet import load_data [as 别名]
def main():
    image_size = 96
    old_dataset = '/home/david/datasets/facescrub/fs_aligned_new_oean/'
    new_dataset = '/home/david/datasets/facescrub/facescrub_110_96/'
    eq = 0
    num = 0
    l = []
    dataset = facenet.get_dataset(old_dataset)
    for cls in dataset:
        new_class_dir = os.path.join(new_dataset, cls.name)
        for image_path in cls.image_paths:
          try:
            filename = os.path.splitext(os.path.split(image_path)[1])[0]
            new_filename = os.path.join(new_class_dir, filename+'.png')
            #print(image_path)
            if os.path.exists(new_filename):
                a = facenet.load_data([image_path, new_filename], False, False, image_size, do_prewhiten=False)
                if np.array_equal(a[0], a[1]):
                  eq+=1
                num+=1
                err = np.sum(np.square(np.subtract(a[0], a[1])))
                #print(err)
                l.append(err)
                if err>2000:
                  fig = plt.figure(1)
                  p1 = fig.add_subplot(121)
                  p1.imshow(a[0])
                  p2 = fig.add_subplot(122)
                  p2.imshow(a[1])
                  print('%6.1f: %s\n' % (err, new_filename))
                  pass
            else:
                pass
                #print('File not found: %s' % new_filename)
          except:
            pass 
开发者ID:1024210879,项目名称:facenet-demo,代码行数:38,代码来源:test_align.py

示例4: compute_facial_encodings

# 需要导入模块: import facenet [as 别名]
# 或者: from facenet import load_data [as 别名]
def compute_facial_encodings(sess,images_placeholder,embeddings,phase_train_placeholder,image_size,
                    embedding_size,nrof_images,nrof_batches,emb_array,batch_size,paths):
    """ Compute Facial Encodings

        Given a set of images, compute the facial encodings of each face detected in the images and
        return them. If no faces, or more than one face found, return nothing for that image.

        Inputs:
            image_paths: a list of image paths

        Outputs:
            facial_encodings: (image_path, facial_encoding) dictionary of facial encodings

    """

    for i in range(nrof_batches):
        start_index = i*batch_size
        end_index = min((i+1)*batch_size, nrof_images)
        paths_batch = paths[start_index:end_index]
        images = facenet.load_data(paths_batch, False, False, image_size)
        feed_dict = { images_placeholder:images, phase_train_placeholder:False }
        emb_array[start_index:end_index,:] = sess.run(embeddings, feed_dict=feed_dict)

    facial_encodings = {}
    for x in range(nrof_images):
        facial_encodings[paths[x]] = emb_array[x,:]


    return facial_encodings 
开发者ID:1024210879,项目名称:facenet-demo,代码行数:31,代码来源:clustering.py

示例5: load_testset

# 需要导入模块: import facenet [as 别名]
# 或者: from facenet import load_data [as 别名]
def load_testset(size):
  # Load images paths and labels
  pairs = lfw.read_pairs(pairs_path)
  paths, labels = lfw.get_paths(testset_path, pairs)

  # Random choice
  permutation = np.random.choice(len(labels), size, replace=False)
  paths_batch_1 = []
  paths_batch_2 = []

  for index in permutation:
    paths_batch_1.append(paths[index * 2])
    paths_batch_2.append(paths[index * 2 + 1])

  labels = np.asarray(labels)[permutation]
  paths_batch_1 = np.asarray(paths_batch_1)
  paths_batch_2 = np.asarray(paths_batch_2)

  # Load images
  faces1 = facenet.load_data(paths_batch_1, False, False, image_size)
  faces2 = facenet.load_data(paths_batch_2, False, False, image_size)

  # Change pixel values to 0 to 1 values
  min_pixel = min(np.min(faces1), np.min(faces2))
  max_pixel = max(np.max(faces1), np.max(faces2))
  faces1 = (faces1 - min_pixel) / (max_pixel - min_pixel)
  faces2 = (faces2 - min_pixel) / (max_pixel - min_pixel)

  # Convert labels to one-hot vectors
  onehot_labels = []
  for index in range(len(labels)):
    if labels[index]:
      onehot_labels.append([1, 0])
    else:
      onehot_labels.append([0, 1])

  return faces1, faces2, np.array(onehot_labels) 
开发者ID:tensorflow,项目名称:cleverhans,代码行数:39,代码来源:set_loader.py

示例6: main

# 需要导入模块: import facenet [as 别名]
# 或者: from facenet import load_data [as 别名]
def main(args):

	with tf.Graph().as_default():

		with tf.Session() as sess:

			# create output directory if it doesn't exist
			output_dir = os.path.expanduser(args.output_dir)
			if not os.path.isdir(output_dir):
				os.makedirs(output_dir)

			# load the model
			print("Loading trained model...\n")
			meta_file, ckpt_file = facenet.get_model_filenames(os.path.expanduser(args.trained_model_dir))
			facenet.load_model(args.trained_model_dir, meta_file, ckpt_file)

			# grab all image paths and labels
			print("Finding image paths and targets...\n")
			data = load_files(args.data_dir, load_content=False, shuffle=False)
			labels_array = data['target']
			paths = data['filenames']

			# Get input and output tensors
			images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
			embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
			phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0")

			image_size = images_placeholder.get_shape()[1]
			embedding_size = embeddings.get_shape()[1]

			# Run forward pass to calculate embeddings
			print('Generating embeddings from images...\n')
			start_time = time.time()
			batch_size = args.batch_size
			nrof_images = len(paths)
			nrof_batches = int(np.ceil(1.0*nrof_images / batch_size))
			emb_array = np.zeros((nrof_images, embedding_size))
			for i in xrange(nrof_batches):
				start_index = i*batch_size
				end_index = min((i+1)*batch_size, nrof_images)
				paths_batch = paths[start_index:end_index]
				images = facenet.load_data(paths_batch, do_random_crop=False, do_random_flip=False, image_size=image_size, do_prewhiten=True)
				feed_dict = { images_placeholder:images, phase_train_placeholder:False}
				emb_array[start_index:end_index,:] = sess.run(embeddings, feed_dict=feed_dict)

			time_avg_forward_pass = (time.time() - start_time) / float(nrof_images)
			print("Forward pass took avg of %.3f[seconds/image] for %d images\n" % (time_avg_forward_pass, nrof_images))

			print("Finally saving embeddings and gallery to: %s" % (output_dir))
			# save the gallery and embeddings (signatures) as numpy arrays to disk
			np.save(os.path.join(output_dir, "gallery.npy"), labels_array)
			np.save(os.path.join(output_dir, "signatures.npy"), emb_array) 
开发者ID:1024210879,项目名称:facenet-demo,代码行数:54,代码来源:batch_represent.py


注:本文中的facenet.load_data方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。